ANNA: A Deep Learning Based Dataset in Heterogeneous Traffic for
Autonomous Vehicles
- URL: http://arxiv.org/abs/2401.11358v1
- Date: Sun, 21 Jan 2024 01:14:04 GMT
- Title: ANNA: A Deep Learning Based Dataset in Heterogeneous Traffic for
Autonomous Vehicles
- Authors: Mahedi Kamal, Tasnim Fariha, Afrina Kabir Zinia, Md. Abu Syed, Fahim
Hasan Khan, Md. Mahbubur Rahman
- Abstract summary: This study discusses a custom-built dataset that includes some unidentified vehicles in the perspective of Bangladesh.
A dataset validity check was performed by evaluating models using the Intersection Over Union (IOU) metric.
The results demonstrated that the model trained on our custom dataset was more precise and efficient than the models trained on the KITTI or COCO dataset concerning Bangladeshi traffic.
- Score: 2.932123507260722
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent breakthroughs in artificial intelligence offer tremendous promise for
the development of self-driving applications. Deep Neural Networks, in
particular, are being utilized to support the operation of semi-autonomous cars
through object identification and semantic segmentation. To assess the
inadequacy of the current dataset in the context of autonomous and
semi-autonomous cars, we created a new dataset named ANNA. This study discusses
a custom-built dataset that includes some unidentified vehicles in the
perspective of Bangladesh, which are not included in the existing dataset. A
dataset validity check was performed by evaluating models using the
Intersection Over Union (IOU) metric. The results demonstrated that the model
trained on our custom dataset was more precise and efficient than the models
trained on the KITTI or COCO dataset concerning Bangladeshi traffic. The
research presented in this paper also emphasizes the importance of developing
accurate and efficient object detection algorithms for the advancement of
autonomous vehicles.
Related papers
- TLD-READY: Traffic Light Detection -- Relevance Estimation and Deployment Analysis [9.458657306918859]
Effective traffic light detection is a critical component of the perception stack in autonomous vehicles.
This work introduces a novel deep-learning detection system while addressing the challenges of previous work.
We propose a relevance estimation system that innovatively uses directional arrow markings on the road, eliminating the need for prior map creation.
arXiv Detail & Related papers (2024-09-11T14:12:44Z) - Label-Efficient 3D Object Detection For Road-Side Units [10.663986706501188]
Collaborative perception can enhance the perception of autonomous vehicles via deep information fusion with intelligent roadside units (RSU)
The data-hungry nature of these methods creates a major hurdle for their real-world deployment, particularly due to the need for annotated RSU data.
We devise a label-efficient object detection method for RSU based on unsupervised object discovery.
arXiv Detail & Related papers (2024-04-09T12:29:16Z) - SubjectDrive: Scaling Generative Data in Autonomous Driving via Subject Control [59.20038082523832]
We present SubjectDrive, the first model proven to scale generative data production in a way that could continuously improve autonomous driving applications.
We develop a novel model equipped with a subject control mechanism, which allows the generative model to leverage diverse external data sources for producing varied and useful data.
arXiv Detail & Related papers (2024-03-28T14:07:13Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Going beyond research datasets: Novel intent discovery in the industry
setting [60.90117614762879]
This paper proposes methods to improve the intent discovery pipeline deployed in a large e-commerce platform.
We show the benefit of pre-training language models on in-domain data: both self-supervised and with weak supervision.
We also devise the best method to utilize the conversational structure (i.e., question and answer) of real-life datasets during fine-tuning for clustering tasks, which we call Conv.
arXiv Detail & Related papers (2023-05-09T14:21:29Z) - Sim-to-Real Domain Adaptation for Lane Detection and Classification in
Autonomous Driving [0.0]
Unsupervised Domain Adaptation (UDA) approaches are considered low-cost and less time-consuming.
We propose UDA schemes using adversarial discriminative and generative methods for lane detection and classification applications in autonomous driving.
arXiv Detail & Related papers (2022-02-15T02:10:14Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - Large Scale Autonomous Driving Scenarios Clustering with Self-supervised
Feature Extraction [6.804209932400134]
This article proposes a comprehensive data clustering framework for a large set of vehicle driving data.
Our approach thoroughly considers the traffic elements, including both in-traffic agent objects and map information.
With the newly designed driving data clustering evaluation metrics based on data-augmentation, the accuracy assessment does not require a human-labeled data-set.
arXiv Detail & Related papers (2021-03-30T06:22:40Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.