TLD-READY: Traffic Light Detection -- Relevance Estimation and Deployment Analysis
- URL: http://arxiv.org/abs/2409.07284v1
- Date: Wed, 11 Sep 2024 14:12:44 GMT
- Title: TLD-READY: Traffic Light Detection -- Relevance Estimation and Deployment Analysis
- Authors: Nikolai Polley, Svetlana Pavlitska, Yacin Boualili, Patrick Rohrbeck, Paul Stiller, Ashok Kumar Bangaru, J. Marius Zöllner,
- Abstract summary: Effective traffic light detection is a critical component of the perception stack in autonomous vehicles.
This work introduces a novel deep-learning detection system while addressing the challenges of previous work.
We propose a relevance estimation system that innovatively uses directional arrow markings on the road, eliminating the need for prior map creation.
- Score: 9.458657306918859
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective traffic light detection is a critical component of the perception stack in autonomous vehicles. This work introduces a novel deep-learning detection system while addressing the challenges of previous work. Utilizing a comprehensive dataset amalgamation, including the Bosch Small Traffic Lights Dataset, LISA, the DriveU Traffic Light Dataset, and a proprietary dataset from Karlsruhe, we ensure a robust evaluation across varied scenarios. Furthermore, we propose a relevance estimation system that innovatively uses directional arrow markings on the road, eliminating the need for prior map creation. On the DriveU dataset, this approach results in 96% accuracy in relevance estimation. Finally, a real-world evaluation is performed to evaluate the deployment and generalizing abilities of these models. For reproducibility and to facilitate further research, we provide the model weights and code: https://github.com/KASTEL-MobilityLab/traffic-light-detection.
Related papers
- Training a Distributed Acoustic Sensing Traffic Monitoring Network With Video Inputs [0.0]
We present a novel concept that integrates DAS data with co-located visual information.
Our model achieves a performance exceeding 94% for detection and classification, and about 1.2% false alarm rate.
arXiv Detail & Related papers (2024-12-17T10:06:42Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.
Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.
We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - ANNA: A Deep Learning Based Dataset in Heterogeneous Traffic for
Autonomous Vehicles [2.932123507260722]
This study discusses a custom-built dataset that includes some unidentified vehicles in the perspective of Bangladesh.
A dataset validity check was performed by evaluating models using the Intersection Over Union (IOU) metric.
The results demonstrated that the model trained on our custom dataset was more precise and efficient than the models trained on the KITTI or COCO dataset concerning Bangladeshi traffic.
arXiv Detail & Related papers (2024-01-21T01:14:04Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Semantic Map Learning of Traffic Light to Lane Assignment based on
Motion Data [12.853720506838043]
Autonomous vehicles commonly rely on High Definition (HD) maps that contain information about the assignment of traffic lights to lanes.
To remedy these issues, our novel approach derives the assignments from traffic light states and the corresponding motion patterns of vehicle traffic.
Our publicly available API for the Lyft Level 5 dataset enables researchers to develop and evaluate their own approaches.
arXiv Detail & Related papers (2023-09-26T09:42:21Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning.
However, the promising results achieved on current public datasets may not be applicable to practical scenarios.
We introduce the LargeST benchmark dataset, which includes a total of 8,600 sensors in California with a 5-year time coverage.
arXiv Detail & Related papers (2023-06-14T05:48:36Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - Improving Perception via Sensor Placement: Designing Multi-LiDAR Systems
for Autonomous Vehicles [16.45799795374353]
We propose an easy-to-compute information-theoretic surrogate cost metric based on Probabilistic Occupancy Grids (POG) to optimize LiDAR placement for maximal sensing.
Our results confirm that sensor placement is an important factor in 3D point cloud-based object detection and could lead to a variation of performance by 10% 20% on the state-of-the-art perception algorithms.
arXiv Detail & Related papers (2021-05-02T01:52:18Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.