論文の概要: Geometric Prior Guided Feature Representation Learning for Long-Tailed Classification
- arxiv url: http://arxiv.org/abs/2401.11436v2
- Date: Sat, 31 Aug 2024 06:24:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 21:31:42.147415
- Title: Geometric Prior Guided Feature Representation Learning for Long-Tailed Classification
- Title(参考訳): 時系列分類のための幾何学的事前指導型特徴表現学習
- Authors: Yanbiao Ma, Licheng Jiao, Fang Liu, Shuyuan Yang, Xu Liu, Puhua Chen,
- Abstract要約: そこで,本論文では,よく表現されたヘッドクラスの特徴分布の幾何学的情報を活用し,モデルにテールクラスの基盤となる分布を学習させる手法を提案する。
パータード機能は、可能な限りテールクラスの基盤となる分布をカバーし、テスト領域におけるモデルの一般化性能を向上させることを目的としている。
- 参考スコア(独自算出の注目度): 47.09355487357069
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world data are long-tailed, the lack of tail samples leads to a significant limitation in the generalization ability of the model. Although numerous approaches of class re-balancing perform well for moderate class imbalance problems, additional knowledge needs to be introduced to help the tail class recover the underlying true distribution when the observed distribution from a few tail samples does not represent its true distribution properly, thus allowing the model to learn valuable information outside the observed domain. In this work, we propose to leverage the geometric information of the feature distribution of the well-represented head class to guide the model to learn the underlying distribution of the tail class. Specifically, we first systematically define the geometry of the feature distribution and the similarity measures between the geometries, and discover four phenomena regarding the relationship between the geometries of different feature distributions. Then, based on four phenomena, feature uncertainty representation is proposed to perturb the tail features by utilizing the geometry of the head class feature distribution. It aims to make the perturbed features cover the underlying distribution of the tail class as much as possible, thus improving the model's generalization performance in the test domain. Finally, we design a three-stage training scheme enabling feature uncertainty modeling to be successfully applied. Experiments on CIFAR-10/100-LT, ImageNet-LT, and iNaturalist2018 show that our proposed approach outperforms other similar methods on most metrics. In addition, the experimental phenomena we discovered are able to provide new perspectives and theoretical foundations for subsequent studies.
- Abstract(参考訳): 実世界のデータは長い尾を持つが、尾のサンプルがないため、モデルの一般化能力は著しく制限される。
クラス再バランスの多くのアプローチは、中等級不均衡問題に対してうまく機能するが、いくつかの尾サンプルから観測された分布がその真の分布を適切に表現していない場合に、尾クラスが真分布を回復するのを助けるために追加の知識を導入する必要がある。
本研究では,よく表現されたヘッドクラスの特徴分布の幾何学的情報を活用し,モデルを用いてテールクラスの基盤分布を学習する手法を提案する。
具体的には,まず特徴分布の幾何学と特徴分布間の類似度尺度を体系的に定義し,異なる特徴分布の幾何学的関係に関する4つの現象を発見する。
そして, 4つの現象に基づいて, ヘッドクラスの特徴分布の幾何を利用して, テール特徴を摂動させる特徴不確実性表現を提案する。
パータード機能は、可能な限りテールクラスの基盤となる分布をカバーし、テスト領域におけるモデルの一般化性能を向上させることを目的としている。
最後に,特徴不確実性モデリングをうまく適用可能な3段階のトレーニングスキームを設計する。
CIFAR-10/100-LT、ImageNet-LT、iNaturalist2018の実験では、提案手法は、多くの指標において、他の類似手法よりも優れていることが示された。
さらに、我々が発見した実験的な現象は、その後の研究に新たな視点と理論的基礎を与えることができる。
関連論文リスト
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Unleashing the power of Neural Collapse for Transferability Estimation [42.09673383041276]
よく訓練されたモデルは神経崩壊の現象を示す。
本稿では、転送可能性推定のためのFair Collapse(FaCe)と呼ばれる新しい手法を提案する。
FaCeは、画像分類、セマンティックセグメンテーション、テキスト分類など、さまざまなタスクにおける最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2023-10-09T14:30:10Z) - Predicting and Enhancing the Fairness of DNNs with the Curvature of Perceptual Manifolds [44.79535333220044]
近年の研究では、テールクラスは必ずしも学習が困難ではないことが示されており、サンプルバランスのデータセットではモデルバイアスが観察されている。
本研究ではまず,モデルフェアネスを解析するための幾何学的視点を確立し,次いで,一連の幾何学的測度を体系的に提案する。
論文 参考訳(メタデータ) (2023-03-22T04:49:23Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
提案手法は,複数の視覚タスクにおけるネットワーク一般化能力を常に改善することを示す。
我々の手法は単純だが有効であり、トレーニング可能なパラメータや損失制約を伴わずにネットワークに容易に統合できる。
論文 参考訳(メタデータ) (2023-01-16T14:25:02Z) - Bias-inducing geometries: an exactly solvable data model with fairness
implications [13.690313475721094]
我々は、正確に解決可能なデータ不均衡の高次元モデルを導入する。
この合成フレームワークで訓練された学習モデルの典型的特性を解析的に解き放つ。
フェアネス評価によく用いられる観測対象の正確な予測値を得る。
論文 参考訳(メタデータ) (2022-05-31T16:27:57Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
オフライン強化学習アプローチは、近近法と不確実性認識法に分けられる。
本研究では,この2つを潜在変動モデルに組み合わせることのメリットを実証する。
提案したメトリクスは、分布サンプルのアウトの品質と、データ内のサンプルの不一致の両方を測定します。
論文 参考訳(メタデータ) (2021-02-22T19:42:40Z) - Provable Benefits of Overparameterization in Model Compression: From
Double Descent to Pruning Neural Networks [38.153825455980645]
最近の実証的な証拠は、オーバライゼーションの実践が大きなモデルのトレーニングに利益をもたらすだけでなく、軽量モデルの構築を支援することも示している。
本稿では,モデル刈り込みの高次元ツールセットを理論的に特徴付けることにより,これらの経験的発見に光を当てる。
もっとも情報に富む特徴の位置が分かっていても、我々は大きなモデルに適合し、刈り取るのがよい体制を解析的に特定する。
論文 参考訳(メタデータ) (2020-12-16T05:13:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。