VQC-Based Reinforcement Learning with Data Re-uploading: Performance and Trainability
- URL: http://arxiv.org/abs/2401.11555v2
- Date: Tue, 12 Nov 2024 18:18:43 GMT
- Title: VQC-Based Reinforcement Learning with Data Re-uploading: Performance and Trainability
- Authors: Rodrigo Coelho, André Sequeira, Luís Paulo Santos,
- Abstract summary: Reinforcement Learning (RL) consists of designing agents that make intelligent decisions without human supervision.
Deep Q-Learning, a RL algorithm that uses Deep NNs, achieved super-human performance in some specific tasks.
It is also possible to use Variational Quantum Circuits (VQCs) as function approximators in RL algorithms.
- Score: 0.8192907805418583
- License:
- Abstract: Reinforcement Learning (RL) consists of designing agents that make intelligent decisions without human supervision. When used alongside function approximators such as Neural Networks (NNs), RL is capable of solving extremely complex problems. Deep Q-Learning, a RL algorithm that uses Deep NNs, achieved super-human performance in some specific tasks. Nonetheless, it is also possible to use Variational Quantum Circuits (VQCs) as function approximators in RL algorithms. This work empirically studies the performance and trainability of such VQC-based Deep Q-Learning models in classic control benchmark environments. More specifically, we research how data re-uploading affects both these metrics. We show that the magnitude and the variance of the gradients of these models remain substantial throughout training due to the moving targets of Deep Q-Learning. Moreover, we empirically show that increasing the number of qubits does not lead to an exponential vanishing behavior of the magnitude and variance of the gradients for a PQC approximating a 2-design, unlike what was expected due to the Barren Plateau Phenomenon. This hints at the possibility of VQCs being specially adequate for being used as function approximators in such a context.
Related papers
- Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
Value-based reinforcement learning can learn effective policies for a wide range of multi-turn problems.
Current value-based RL methods have proven particularly challenging to scale to the setting of large language models.
We propose a novel offline RL algorithm that addresses these drawbacks, casting Q-learning as a modified supervised fine-tuning problem.
arXiv Detail & Related papers (2024-11-07T21:36:52Z) - Variational Quantum Circuit Design for Quantum Reinforcement Learning on
Continuous Environments [2.9723999564214267]
Quantum Reinforcement Learning (QRL) emerged as a branch of reinforcement learning (RL) that uses quantum submodules in the architecture of the algorithm.
One branch of QRL focuses on the replacement of neural networks (NN) by variational quantum circuits (VQC) as function approximators.
We show how to design a QRL agent in order to solve classical environments with continuous action spaces and benchmark our agents against classical feed-forward NNs.
arXiv Detail & Related papers (2023-12-21T12:40:01Z) - Efficient quantum recurrent reinforcement learning via quantum reservoir
computing [3.6881738506505988]
Quantum reinforcement learning (QRL) has emerged as a framework to solve sequential decision-making tasks.
This work presents a novel approach to address this challenge by constructing QRL agents utilizing QRNN-based quantum long short-term memory (QLSTM)
arXiv Detail & Related papers (2023-09-13T22:18:38Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
We introduce the concept of weight re-mapping for variational quantum circuits (VQCs)
We employ seven distinct weight re-mapping functions to assess their impact on eight classification datasets.
Our results indicate that weight re-mapping can enhance the convergence speed of the VQC.
arXiv Detail & Related papers (2023-06-09T09:42:21Z) - Asynchronous training of quantum reinforcement learning [0.8702432681310399]
A leading method of building quantum RL agents relies on the variational quantum circuits (VQCs)
In this paper, we approach this challenge through asynchronous training QRL agents.
We demonstrate the results via numerical simulations that within the tasks considered, the asynchronous training of QRL agents can reach performance comparable to or superior.
arXiv Detail & Related papers (2023-01-12T15:54:44Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - Deep Reinforcement Learning with Spiking Q-learning [51.386945803485084]
spiking neural networks (SNNs) are expected to realize artificial intelligence (AI) with less energy consumption.
It provides a promising energy-efficient way for realistic control tasks by combining SNNs with deep reinforcement learning (RL)
arXiv Detail & Related papers (2022-01-21T16:42:11Z) - Online Target Q-learning with Reverse Experience Replay: Efficiently
finding the Optimal Policy for Linear MDPs [50.75812033462294]
We bridge the gap between practical success of Q-learning and pessimistic theoretical results.
We present novel methods Q-Rex and Q-RexDaRe.
We show that Q-Rex efficiently finds the optimal policy for linear MDPs.
arXiv Detail & Related papers (2021-10-16T01:47:41Z) - Recomposing the Reinforcement Learning Building Blocks with
Hypernetworks [19.523737925041278]
We show that a primary network determines the weights of a conditional dynamic network.
This approach improves the gradient approximation and reduces the learning step variance.
We demonstrate a consistent improvement across different locomotion tasks and different algorithms both in RL (TD3 and SAC) and in Meta-RL (MAML and PEARL)
arXiv Detail & Related papers (2021-06-12T19:43:12Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
We introduce a training method for parametrized quantum circuits (PQCs) that can be used to solve RL tasks for discrete and continuous state spaces.
We investigate which architectural choices for quantum Q-learning agents are most important for successfully solving certain types of environments.
arXiv Detail & Related papers (2021-03-28T08:57:22Z) - Characterizing the loss landscape of variational quantum circuits [77.34726150561087]
We introduce a way to compute the Hessian of the loss function of VQCs.
We show how this information can be interpreted and compared to classical neural networks.
arXiv Detail & Related papers (2020-08-06T17:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.