Evaluating Parameter-Based Training Performance of Neural Networks and Variational Quantum Circuits
- URL: http://arxiv.org/abs/2504.07273v1
- Date: Wed, 09 Apr 2025 21:00:41 GMT
- Title: Evaluating Parameter-Based Training Performance of Neural Networks and Variational Quantum Circuits
- Authors: Michael Kölle, Alexander Feist, Jonas Stein, Sebastian Wölckert, Claudia Linnhoff-Popien,
- Abstract summary: Variational quantum circuits (VQCs) offer a promising alternative to neural networks (NNs)<n>VQCs leverage quantum mechanics to capture intricate relationships and typically need fewer parameters.<n>We show that VQCs can match NNs in performance while using significantly fewer parameters, despite longer training durations.
- Score: 43.528848176938844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, neural networks (NNs) have driven significant advances in machine learning. However, as tasks grow more complex, NNs often require large numbers of trainable parameters, which increases computational and energy demands. Variational quantum circuits (VQCs) offer a promising alternative: they leverage quantum mechanics to capture intricate relationships and typically need fewer parameters. In this work, we evaluate NNs and VQCs on simple supervised and reinforcement learning tasks, examining models with different parameter sizes. We simulate VQCs and execute selected parts of the training process on real quantum hardware to approximate actual training times. Our results show that VQCs can match NNs in performance while using significantly fewer parameters, despite longer training durations. As quantum technology and algorithms advance, and VQC architectures improve, we posit that VQCs could become advantageous for certain machine learning tasks.
Related papers
- Training Hybrid Deep Quantum Neural Network for Reinforcement Learning Efficiently [2.7812018782449073]
Quantum machine learning (QML) emerged recently as a novel interdisciplinary research direction.<n>Recent works on hybrid QML models, compatible with noisy intermediate-scale quantum computers, have hinted at improved performance.<n>We present a scalable QML architecture that overcomes challenges and demonstrates efficient batch optimization through PQC blocks.
arXiv Detail & Related papers (2025-03-12T07:12:02Z) - Regression and Classification with Single-Qubit Quantum Neural Networks [0.0]
We use a resource-efficient and scalable Single-Qubit Quantum Neural Network (SQQNN) for both regression and classification tasks.<n>For classification, we introduce a novel training method inspired by the Taylor series, which can efficiently find a global minimum in a single step.<n>The SQQNN exhibits virtually error-free and strong performance in regression and classification tasks, including the MNIST dataset.
arXiv Detail & Related papers (2024-12-12T17:35:36Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine learning framework [48.491303218786044]
TeD-Q is an open-source software framework for quantum machine learning.<n>It seamlessly integrates classical machine learning libraries with quantum simulators.<n>It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Improving Convergence for Quantum Variational Classifiers using Weight
Re-Mapping [60.086820254217336]
In recent years, quantum machine learning has seen a substantial increase in the use of variational quantum circuits (VQCs)
We introduce weight re-mapping for VQCs, to unambiguously map the weights to an interval of length $2pi$.
We demonstrate that weight re-mapping increased test accuracy for the Wine dataset by $10%$ over using unmodified weights.
arXiv Detail & Related papers (2022-12-22T13:23:19Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Learning capability of parametrized quantum circuits [2.51657752676152]
Variational quantum algorithms (VQAs) and their applications in the field of quantum machine learning through parametrized quantum circuits (PQCs) are thought to be one major way of leveraging noisy intermediate-scale quantum computing devices.
In this paper, we build upon the work by Schuld et al. and compare popular ans"atze for PQCs through the new measure of learning capability.
We also examine dissipative quantum neural networks (dQNN) as introduced by Beer et al. and propose a data re-upload structure for dQNNs to increase their learning capability.
arXiv Detail & Related papers (2022-09-21T13:26:20Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
We introduce a training method for parametrized quantum circuits (PQCs) that can be used to solve RL tasks for discrete and continuous state spaces.
We investigate which architectural choices for quantum Q-learning agents are most important for successfully solving certain types of environments.
arXiv Detail & Related papers (2021-03-28T08:57:22Z) - Recurrent Quantum Neural Networks [7.6146285961466]
Recurrent neural networks are the foundation of many sequence-to-sequence models in machine learning.
We construct a quantum recurrent neural network (QRNN) with demonstrable performance on non-trivial tasks.
We evaluate the QRNN on MNIST classification, both by feeding the QRNN each image pixel-by-pixel; and by utilising modern data augmentation as preprocessing step.
arXiv Detail & Related papers (2020-06-25T17:59:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.