Distributed Multi-Task Learning for Stochastic Bandits with Context Distribution and Stage-wise Constraints
- URL: http://arxiv.org/abs/2401.11563v2
- Date: Tue, 9 Apr 2024 20:36:05 GMT
- Title: Distributed Multi-Task Learning for Stochastic Bandits with Context Distribution and Stage-wise Constraints
- Authors: Jiabin Lin, Shana Moothedath,
- Abstract summary: We propose a distributed upper confidence bound (UCB) algorithm, related-UCB.
Our algorithm constructs a pruned action set during each round to ensure the constraints are met.
We empirically validated the performance of our algorithm on synthetic data and real-world Movielens-100K data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the problem of conservative distributed multi-task learning in stochastic linear contextual bandits with heterogeneous agents. This extends conservative linear bandits to a distributed setting where M agents tackle different but related tasks while adhering to stage-wise performance constraints. The exact context is unknown, and only a context distribution is available to the agents as in many practical applications that involve a prediction mechanism to infer context, such as stock market prediction and weather forecast. We propose a distributed upper confidence bound (UCB) algorithm, DiSC-UCB. Our algorithm constructs a pruned action set during each round to ensure the constraints are met. Additionally, it includes synchronized sharing of estimates among agents via a central server using well-structured synchronization steps. We prove the regret and communication bounds on the algorithm. We extend the problem to a setting where the agents are unaware of the baseline reward. For this setting, we provide a modified algorithm, DiSC-UCB2, and we show that the modified algorithm achieves the same regret and communication bounds. We empirically validated the performance of our algorithm on synthetic data and real-world Movielens-100K data.
Related papers
- Robust Stochastically-Descending Unrolled Networks [85.6993263983062]
Deep unrolling is an emerging learning-to-optimize method that unrolls a truncated iterative algorithm in the layers of a trainable neural network.
We show that convergence guarantees and generalizability of the unrolled networks are still open theoretical problems.
We numerically assess unrolled architectures trained under the proposed constraints in two different applications.
arXiv Detail & Related papers (2023-12-25T18:51:23Z) - Provably Efficient Learning in Partially Observable Contextual Bandit [4.910658441596583]
We show how causal bounds can be applied to improving classical bandit algorithms.
This research has the potential to enhance the performance of contextual bandit agents in real-world applications.
arXiv Detail & Related papers (2023-08-07T13:24:50Z) - Federated Learning for Heterogeneous Bandits with Unobserved Contexts [0.0]
We study the problem of federated multi-arm contextual bandits with unknown contexts.
We propose an elimination-based algorithm and prove the regret bound for linearly parametrized reward functions.
arXiv Detail & Related papers (2023-03-29T22:06:24Z) - Distributed Stochastic Bandit Learning with Context Distributions [0.0]
We study the problem of distributed multi-arm contextual bandit with unknown contexts.
In our model, an adversary chooses a distribution on the set of possible contexts and the agents observe only the context distribution and the exact context is unknown to the agents.
Our goal is to develop a distributed algorithm that selects a sequence of optimal actions to maximize the cumulative reward.
arXiv Detail & Related papers (2022-07-28T22:00:11Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
We consider a distributed reinforcement learning setting where multiple agents explore the environment and communicate their experiences through a central server.
$alpha$-fraction of agents are adversarial and can report arbitrary fake information.
We seek to identify a near-optimal policy for the underlying Markov decision process in the presence of these adversarial agents.
arXiv Detail & Related papers (2022-06-01T00:44:53Z) - Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time
Reinforcement Learning [39.07307690074323]
We consider the problem of predicting the distribution of returns obtained by an agent interacting in a continuous-time environment.
Accurate return predictions have proven useful for determining optimal policies for risk-sensitive control, state representations, multiagent coordination, and more.
We propose a tractable algorithm for approximately solving the distributional HJB based on a JKO scheme, which can be implemented in an online control algorithm.
arXiv Detail & Related papers (2022-05-24T16:33:54Z) - Contextual Model Aggregation for Fast and Robust Federated Learning in
Edge Computing [88.76112371510999]
Federated learning is a prime candidate for distributed machine learning at the network edge.
Existing algorithms face issues with slow convergence and/or robustness of performance.
We propose a contextual aggregation scheme that achieves the optimal context-dependent bound on loss reduction.
arXiv Detail & Related papers (2022-03-23T21:42:31Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - Kernel Methods for Cooperative Multi-Agent Contextual Bandits [15.609414012418043]
Cooperative multi-agent decision making involves a group of agents cooperatively solving learning problems while communicating over a network with delays.
We consider the kernelised contextual bandit problem, where the reward obtained by an agent is an arbitrary linear function of the contexts' images in the related kernel reproducing Hilbert space (RKHS)
We propose textscCoop- KernelUCB, an algorithm that provides near-optimal bounds on the per-agent regret.
arXiv Detail & Related papers (2020-08-14T07:37:44Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
We present a distributional approach to theoretical analyses of reinforcement learning algorithms for constant step-sizes.
We show that value-based methods such as TD($lambda$) and $Q$-Learning have update rules which are contractive in the space of distributions of functions.
arXiv Detail & Related papers (2020-03-27T05:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.