Continuous Field Reconstruction from Sparse Observations with Implicit
Neural Networks
- URL: http://arxiv.org/abs/2401.11611v1
- Date: Sun, 21 Jan 2024 22:18:29 GMT
- Title: Continuous Field Reconstruction from Sparse Observations with Implicit
Neural Networks
- Authors: Xihaier Luo, Wei Xu, Yihui Ren, Shinjae Yoo, Balu Nadiga
- Abstract summary: This work presents a novel approach that learns a continuous representation of a physical field using implicit neural representations.
In experimental evaluations, the proposed model outperforms recent INR methods.
- Score: 11.139052252214917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliably reconstructing physical fields from sparse sensor data is a
challenge that frequently arises in many scientific domains. In practice, the
process generating the data often is not understood to sufficient accuracy.
Therefore, there is a growing interest in using the deep neural network route
to address the problem. This work presents a novel approach that learns a
continuous representation of the physical field using implicit neural
representations (INRs). Specifically, after factorizing spatiotemporal
variability into spatial and temporal components using the separation of
variables technique, the method learns relevant basis functions from sparsely
sampled irregular data points to develop a continuous representation of the
data. In experimental evaluations, the proposed model outperforms recent INR
methods, offering superior reconstruction quality on simulation data from a
state-of-the-art climate model and a second dataset that comprises ultra-high
resolution satellite-based sea surface temperature fields.
Related papers
- Neural Incremental Data Assimilation [8.817223931520381]
We introduce a deep learning approach where the physical system is modeled as a sequence of coarse-to-fine Gaussian prior distributions parametrized by a neural network.
This allows us to define an assimilation operator, which is trained in an end-to-end fashion to minimize the reconstruction error.
We illustrate our approach on chaotic dynamical physical systems with sparse observations, and compare it to traditional variational data assimilation methods.
arXiv Detail & Related papers (2024-06-21T11:42:55Z) - Modeling Randomly Observed Spatiotemporal Dynamical Systems [7.381752536547389]
Currently available neural network-based modeling approaches fall short when faced with data collected randomly over time and space.
In response, we developed a new method that effectively handles such randomly sampled data.
Our model integrates techniques from amortized variational inference, neural differential equations, neural point processes, and implicit neural representations to predict both the dynamics of the system and the timings and locations of future observations.
arXiv Detail & Related papers (2024-06-01T09:03:32Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Multi-Modal Learning-based Reconstruction of High-Resolution Spatial
Wind Speed Fields [46.72819846541652]
We propose a framework based on Vari Data Assimilation and Deep Learning concepts.
This framework is applied to recover rich-in-time, high-resolution information on sea surface wind speed.
arXiv Detail & Related papers (2023-12-14T13:40:39Z) - RecFNO: a resolution-invariant flow and heat field reconstruction method
from sparse observations via Fourier neural operator [8.986743262828009]
We propose an end-to-end physical field reconstruction method with both excellent performance and mesh transferability named RecFNO.
The proposed method aims to learn the mapping from sparse observations to flow and heat field in infinite-dimensional space.
The experiments conducted on fluid mechanics and thermology problems show that the proposed method outperforms existing POD-based and CNN-based methods in most cases.
arXiv Detail & Related papers (2023-02-20T07:20:22Z) - Physics-informed Deep Super-resolution for Spatiotemporal Data [18.688475686901082]
Deep learning can be used to augment scientific data based on coarse-grained simulations.
We propose a rich and efficient temporal super-resolution framework inspired by physics-informed learning.
Results demonstrate the superior effectiveness and efficiency of the proposed method compared with baseline algorithms.
arXiv Detail & Related papers (2022-08-02T13:57:35Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.