論文の概要: Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo
- arxiv url: http://arxiv.org/abs/2401.11665v3
- Date: Fri, 21 Jun 2024 01:54:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 19:58:24.497743
- Title: Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo
- Title(参考訳): アンダーダム型Langevin Monte Carloによる近似トンプソンサンプリングの高速化
- Authors: Haoyang Zheng, Wei Deng, Christian Moya, Guang Lin,
- Abstract要約: 本稿では,Langevin Monte Carlo を用いた近似トンプソンサンプリング手法を提案する。
標準スムーズ性および対数凹凸性条件に基づき,加速後濃度およびサンプリングについて検討した。
提案アルゴリズムは,高次元バンディット問題における合成実験により実験的に検証される。
- 参考スコア(独自算出の注目度): 7.968641076961955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Approximate Thompson sampling with Langevin Monte Carlo broadens its reach from Gaussian posterior sampling to encompass more general smooth posteriors. However, it still encounters scalability issues in high-dimensional problems when demanding high accuracy. To address this, we propose an approximate Thompson sampling strategy, utilizing underdamped Langevin Monte Carlo, where the latter is the go-to workhorse for simulations of high-dimensional posteriors. Based on the standard smoothness and log-concavity conditions, we study the accelerated posterior concentration and sampling using a specific potential function. This design improves the sample complexity for realizing logarithmic regrets from $\mathcal{\tilde O}(d)$ to $\mathcal{\tilde O}(\sqrt{d})$. The scalability and robustness of our algorithm are also empirically validated through synthetic experiments in high-dimensional bandit problems.
- Abstract(参考訳): ランゲヴィン・モンテカルロによる近似トンプソンサンプリングは、ガウス後部サンプリングからより一般的な滑らかな後部サンプリングの範囲を広げる。
しかし、高い精度を必要とする場合、高次元問題ではスケーラビリティの問題に遭遇する。
そこで本研究では,Langevin Monte Carlo を用いたトンプソンサンプリング手法を提案する。
標準の滑らかさと対数凹凸条件に基づいて, 加速後部濃度とサンプリングを, 特定のポテンシャル関数を用いて検討した。
この設計では、対数的後悔を$\mathcal{\tilde O}(d)$から$\mathcal{\tilde O}(\sqrt{d})$へと改善する。
このアルゴリズムのスケーラビリティと堅牢性は,高次元バンディット問題における合成実験を通じて実証的に検証される。
関連論文リスト
- Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
非log-concave分布からのサンプリングのための近位サンプリング器 (SPS) について検討した。
対象分布への収束性は,アルゴリズムの軌道が有界である限り保証可能であることを示す。
我々は、Langevin dynamics(SGLD)とLangevin-MALAの2つの実装可能な変種を提供し、SPS-SGLDとSPS-MALAを生み出した。
論文 参考訳(メタデータ) (2024-05-27T00:53:18Z) - Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo [104.9535542833054]
我々は、強化学習のためのトンプソンサンプリングに基づくスケーラブルで効果的な探索戦略を提案する。
代わりに、Langevin Monte Carlo を用いて、Q 関数をその後部分布から直接サンプリングする。
提案手法は,Atari57スイートからのいくつかの挑戦的な探索課題において,最先端の深部RLアルゴリズムと比較して,より優れた,あるいは類似した結果が得られる。
論文 参考訳(メタデータ) (2023-05-29T17:11:28Z) - Thompson Sampling for High-Dimensional Sparse Linear Contextual Bandits [17.11922027966447]
この研究は、高次元およびスパースな文脈的包帯におけるトンプソンサンプリングの理論的な保証を提供する。
より高速な計算のために、MCMCの代わりに未知のパラメータと変分推論をモデル化するために、スパイク・アンド・スラブを用いる。
論文 参考訳(メタデータ) (2022-11-11T02:23:39Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) が提案されている。
提案アルゴリズムは,文脈的帯域幅の特別な場合において,最高のトンプソンサンプリングアルゴリズムと同じサブ線形残差を達成できることを示す。
論文 参考訳(メタデータ) (2022-06-22T17:58:23Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
本研究では,空間統計学から広く用いられている点過程の適応センシングについて検討する。
我々は、この強度関数を、特別に構築された正の基底で表される、歪んだガウス過程のサンプルとしてモデル化する。
我々の適応センシングアルゴリズムはランゲヴィン力学を用いており、後続サンプリング(textscCox-Thompson)と後続サンプリング(textscTop2)の原理に基づいている。
論文 参考訳(メタデータ) (2021-10-21T14:47:06Z) - Diffusion Approximations for Thompson Sampling [4.390757904176221]
本研究では,SDEの水平線とODEの離散バージョンに基づいてトンプソンサンプリングのダイナミクスが進化することを示す。
我々の弱収束理論は、連続写像定理を用いて第一原理から発展する。
論文 参考訳(メタデータ) (2021-05-19T16:28:01Z) - Analysis and Design of Thompson Sampling for Stochastic Partial
Monitoring [91.22679787578438]
部分モニタリングのためのトンプソンサンプリングに基づく新しいアルゴリズムを提案する。
局所可観測性を持つ問題の線形化変種に対して,新たなアルゴリズムが対数問題依存の擬似回帰$mathrmO(log T)$を達成することを証明した。
論文 参考訳(メタデータ) (2020-06-17T05:48:33Z) - On Thompson Sampling with Langevin Algorithms [106.78254564840844]
多武装バンディット問題に対するトンプソンサンプリングは理論と実践の両方において良好な性能を享受する。
計算上のかなりの制限に悩まされており、反復ごとに後続分布からのサンプルを必要とする。
本稿では,この問題に対処するために,トンプソンサンプリングに適した2つのマルコフ連鎖モンテカルロ法を提案する。
論文 参考訳(メタデータ) (2020-02-23T22:35:29Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。