RTA-Former: Reverse Transformer Attention for Polyp Segmentation
- URL: http://arxiv.org/abs/2401.11671v2
- Date: Sun, 28 Apr 2024 22:21:56 GMT
- Title: RTA-Former: Reverse Transformer Attention for Polyp Segmentation
- Authors: Zhikai Li, Murong Yi, Ali Uneri, Sihan Niu, Craig Jones,
- Abstract summary: We introduce a novel network, namely RTA-Former, that employs a transformer model as the encoder backbone and innovatively adapts Reverse Attention (RA) with a transformer stage in the decoder for enhanced edge segmentation.
The results of the experiments illustrate that RTA-Former achieves state-of-the-art (SOTA) performance in five polyp segmentation datasets.
- Score: 1.383118997843137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polyp segmentation is a key aspect of colorectal cancer prevention, enabling early detection and guiding subsequent treatments. Intelligent diagnostic tools, including deep learning solutions, are widely explored to streamline and potentially automate this process. However, even with many powerful network architectures, there still comes the problem of producing accurate edge segmentation. In this paper, we introduce a novel network, namely RTA-Former, that employs a transformer model as the encoder backbone and innovatively adapts Reverse Attention (RA) with a transformer stage in the decoder for enhanced edge segmentation. The results of the experiments illustrate that RTA-Former achieves state-of-the-art (SOTA) performance in five polyp segmentation datasets. The strong capability of RTA-Former holds promise in improving the accuracy of Transformer-based polyp segmentation, potentially leading to better clinical decisions and patient outcomes. Our code is publicly available on GitHub.
Related papers
- ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - CFPFormer: Feature-pyramid like Transformer Decoder for Segmentation and Detection [1.837431956557716]
Feature pyramids have been widely adopted in convolutional neural networks (CNNs) and transformers for tasks like medical image segmentation and object detection.
We propose a novel decoder block that integrates feature pyramids and transformers.
Our model achieves superior performance in detecting small objects compared to existing methods.
arXiv Detail & Related papers (2024-04-23T18:46:07Z) - RaBiT: An Efficient Transformer using Bidirectional Feature Pyramid
Network with Reverse Attention for Colon Polyp Segmentation [0.0]
This paper introduces RaBiT, an encoder-decoder model that incorporates a lightweight Transformer-based architecture in the encoder.
Our method demonstrates high generalization capability in cross-dataset experiments, even when the training and test sets have different characteristics.
arXiv Detail & Related papers (2023-07-12T19:25:10Z) - SegT: A Novel Separated Edge-guidance Transformer Network for Polyp
Segmentation [10.144870911523622]
We propose a novel separated edge-guidance transformer (SegT) network that aims to build an effective polyp segmentation model.
A transformer encoder that learns a more robust representation than existing CNN-based approaches was specifically applied.
To evaluate the effectiveness of SegT, we conducted experiments with five challenging public datasets.
arXiv Detail & Related papers (2023-06-19T08:32:05Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - LAPFormer: A Light and Accurate Polyp Segmentation Transformer [6.352264764099531]
We propose a new model with encoder-decoder architecture named LAPFormer, which uses a hierarchical Transformer encoder to better extract global feature.
Our proposed decoder contains a progressive feature fusion module designed for fusing feature from upper scales and lower scales.
We test our model on five popular benchmark datasets for polyp segmentation.
arXiv Detail & Related papers (2022-10-10T01:52:30Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unet is an Unet-like pure Transformer for medical image segmentation.
tokenized image patches are fed into the Transformer-based U-shaped decoder-Decoder architecture.
arXiv Detail & Related papers (2021-05-12T09:30:26Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.