PraNet: Parallel Reverse Attention Network for Polyp Segmentation
- URL: http://arxiv.org/abs/2006.11392v4
- Date: Fri, 3 Jul 2020 13:14:44 GMT
- Title: PraNet: Parallel Reverse Attention Network for Polyp Segmentation
- Authors: Deng-Ping Fan, Ge-Peng Ji, Tao Zhou, Geng Chen, Huazhu Fu, Jianbing
Shen, Ling Shao
- Abstract summary: We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
- Score: 155.93344756264824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Colonoscopy is an effective technique for detecting colorectal polyps, which
are highly related to colorectal cancer. In clinical practice, segmenting
polyps from colonoscopy images is of great importance since it provides
valuable information for diagnosis and surgery. However, accurate polyp
segmentation is a challenging task, for two major reasons: (i) the same type of
polyps has a diversity of size, color and texture; and (ii) the boundary
between a polyp and its surrounding mucosa is not sharp. To address these
challenges, we propose a parallel reverse attention network (PraNet) for
accurate polyp segmentation in colonoscopy images. Specifically, we first
aggregate the features in high-level layers using a parallel partial decoder
(PPD). Based on the combined feature, we then generate a global map as the
initial guidance area for the following components. In addition, we mine the
boundary cues using a reverse attention (RA) module, which is able to establish
the relationship between areas and boundary cues. Thanks to the recurrent
cooperation mechanism between areas and boundaries, our PraNet is capable of
calibrating any misaligned predictions, improving the segmentation accuracy.
Quantitative and qualitative evaluations on five challenging datasets across
six metrics show that our PraNet improves the segmentation accuracy
significantly, and presents a number of advantages in terms of
generalizability, and real-time segmentation efficiency.
Related papers
- ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - Multi-scale Information Sharing and Selection Network with Boundary Attention for Polyp Segmentation [10.152504573356413]
We propose a Multi-scale information sharing and selection network (MISNet) for polyp segmentation task.
Experiments on five polyp segmentation datasets demonstrate that MISNet successfully improved the accuracy and clarity of segmentation result.
arXiv Detail & Related papers (2024-05-18T02:48:39Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Polyper: Boundary Sensitive Polyp Segmentation [32.00049708774388]
We present a new boundary sensitive framework for polyp segmentation, called Polyper.
Our method is motivated by a clinical approach that seasoned medical practitioners often leverage the inherent features of interior polyp regions to tackle blurred boundaries.
To evaluate the effectiveness of Polyper, we conduct experiments on five publicly available challenging datasets, and receive state-of-the-art performance on all of them.
arXiv Detail & Related papers (2023-12-14T08:27:00Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation [17.8181080354116]
We propose a feature enhancement network for accurate polyp segmentation in colonoscopy images.
Specifically, the proposed network enhances the semantic information using the novel Semantic Feature Enhance Module (SFEM)
The proposed approach is evaluated on five colonoscopy datasets and demonstrates superior performance compared to other state-of-the-art models.
arXiv Detail & Related papers (2021-05-03T16:46:26Z) - Colorectal Polyp Segmentation by U-Net with Dilation Convolution [9.840695333927496]
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a leading cause of cancer deaths in the United States.
Currently, the most common way for colorectal polyp detection and precancerous pathology is the colonoscopy.
We propose a novel end-to-end deep learning framework for the colorectal polyp segmentation.
arXiv Detail & Related papers (2019-12-26T23:27:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.