論文の概要: Simulating Nighttime Visible Satellite Imagery of Tropical Cyclones
Using Conditional Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2401.11679v1
- Date: Mon, 22 Jan 2024 03:44:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-01-23 15:08:56.356556
- Title: Simulating Nighttime Visible Satellite Imagery of Tropical Cyclones
Using Conditional Generative Adversarial Networks
- Title(参考訳): 条件付き生成逆ネットワークによる熱帯サイクロンの夜間可視衛星画像のシミュレーション
- Authors: Jinghuai Yao, Puyuan Du, Yucheng Zhao, and Yubo Wang
- Abstract要約: 本研究では,夜間可視反射率を高精度に生成するCGANモデルを提案する。
日中における高度ヒマワリ画像装置(AHI)の目標領域観測により,本モデルを訓練し,検証した。
本研究は、可視・赤外線画像放射計スイート(VIIRS)のデイ/ナイトバンド(DNB)を用いた夜間モデル検証も行った。
- 参考スコア(独自算出の注目度): 10.76837828367292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visible (VIS) imagery of satellites has various important applications in
meteorology, including monitoring Tropical Cyclones (TCs). However, it is
unavailable at night because of the lack of sunlight. This study presents a
Conditional Generative Adversarial Networks (CGAN) model that generates highly
accurate nighttime visible reflectance using infrared (IR) bands and sunlight
direction parameters as input. The model was trained and validated using target
area observations of the Advanced Himawari Imager (AHI) in the daytime. This
study also presents the first nighttime model validation using the Day/Night
Band (DNB) of the Visible/Infrared Imager Radiometer Suite (VIIRS). The daytime
statistical results of the Structural Similarity Index Measure (SSIM), Peak
Signal-to-Noise Ratio (PSNR), Root Mean Square Error (RMSE), Correlation
Coefficient (CC), and Bias are 0.885, 28.3, 0.0428, 0.984, and -0.0016
respectively, completely surpassing the model performance of previous studies.
The nighttime statistical results of SSIM, PSNR, RMSE, and CC are 0.821, 24.4,
0.0643, and 0.969 respectively, which are slightly negatively impacted by the
parallax between satellites. We performed full-disk model validation which
proves our model could also be readily applied in the tropical ocean without
TCs in the northern hemisphere. This model contributes to the nighttime
monitoring of meteorological phenomena by providing accurate AI-generated
visible imagery with adjustable virtual sunlight directions.
- Abstract(参考訳): 可視光(VIS)画像は、熱帯サイクロン(TC)の観測など、気象学に様々な重要な応用がある。
しかし、日光不足のため夜間は利用できない。
本研究では、赤外(IR)帯域と日光方向パラメータを入力として、高精度な夜間可視反射率を生成する条件生成適応ネットワーク(CGAN)モデルを提案する。
日中における高度ヒマワリ画像装置(AHI)の目標領域観測により,本モデルを訓練し,検証した。
また,可視・赤外線画像放射計スイート(VIIRS)のデイ/ナイトバンド(DNB)を用いた夜間モデル検証を行った。
構造類似度指数測定(SSIM)、ピーク信号対雑音比(PSNR)、ルート平均角誤差(RMSE)、相関係数(CC)、バイアスは0.885, 28.3, 0.0428, 0.984, -0.0016であり、前回のモデル性能を大きく上回っている。
SSIM、PSNR、RMSE、CCの夜間統計結果は、それぞれ0.821、24.4、0.0643、0.969であり、衛星間のパララックスにわずかに負の影響を受けている。
北半球ではtcsを使わずに熱帯海でも容易にモデルが適用できることを示すフルディスクモデル検証を行った。
このモデルは、調整可能な仮想日光方向を持つ正確なAI生成可視画像を提供することにより、気象現象の夜間モニタリングに寄与する。
関連論文リスト
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Estimating Atmospheric Variables from Digital Typhoon Satellite Images via Conditional Denoising Diffusion Models [0.0]
本研究では,台風分野における拡散モデルの適用について検討する。
この研究の焦点は台湾であり、台風に非常に脆弱な地域である。
論文 参考訳(メタデータ) (2024-09-12T11:42:40Z) - Enhancing Robustness of Human Detection Algorithms in Maritime SAR through Augmented Aerial Images to Simulate Weather Conditions [1.660242118349614]
本稿では,海中SARにおける人間の検出精度を向上させることを目的として,様々な標高と地質的位置を含む頑健なデータセットを評価する。
その結果, 強化データセットを用いたモデルでは, ヒトのリコールスコアが0.891から0.911の範囲で, YOLOv5lモデルでは3.4%向上した。
論文 参考訳(メタデータ) (2024-08-25T08:23:06Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - Seeing Through the Clouds: Cloud Gap Imputation with Prithvi Foundation Model [1.2374541748245838]
マルチスペクトル衛星画像の時系列において,視覚変換器(ViT)モデルと基本条件生成逆数ネットワーク(CGAN)モデルを比較した。
現実のクラウドマスクを用いて衛星画像の時系列をランダムにマスキングし、各モデルをトレーニングし、欠落したピクセルを再構築する。
論文 参考訳(メタデータ) (2024-04-30T15:03:27Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
本稿では3つの進歩を取り入れた方法論であるStableDreamerを紹介する。
まず、SDS生成前の等価性と、簡単な教師付きL2再構成損失を定式化する。
第2に,画像空間拡散は幾何学的精度に寄与するが,色調の鮮明化には潜時空間拡散が不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-02T02:27:58Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Deep learning-based deconvolution for interferometric radio transient
reconstruction [0.39259415717754914]
LOFAR、MeerKAT/SKA、ASKAP/SKA、そして将来のSKA-LOWのような電波天文学施設は、時間と周波数に大きな感度をもたらす。
これらの施設は、自然によって揮発し、データに検出または見逃される無線過渡現象の高度な研究を可能にする。
これらのトランジェントは、電子の高エネルギー加速のマーカーであり、幅広い時間スケールで表される。
論文 参考訳(メタデータ) (2023-06-24T08:58:52Z) - PRISM: Probabilistic Real-Time Inference in Spatial World Models [52.878769723544615]
PRISMはエージェントの動きと視覚知覚の確率的生成モデルにおけるリアルタイムフィルタリングの手法である。
提案手法は10Hzでリアルタイムに動作し,小型・中型屋内環境における最先端SLAMと同等に精度が高い。
論文 参考訳(メタデータ) (2022-12-06T13:59:06Z) - DL-Corrector-Remapper: A grid-free bias-correction deep learning
methodology for data-driven high-resolution global weather forecasting [11.334341754942917]
我々はFourCastNet(FCN)の一様予測を補正し、再マップし、微調整する手法を開発した。
これは、数値天気予報(NWP)のバイアス補正と後処理に似ている
私たちはこのネットワークをDLCR(Deep-Learning-Corrector-Remapper)と呼ぶ。
論文 参考訳(メタデータ) (2022-10-21T23:04:44Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - Thermal infrared image based vehicle detection in low-level illumination
conditions using multi-level GANs [3.3223482500639845]
車両検出精度は、良照度条件ではかなり正確であるが、低照度条件では検出精度が劣る。
車両ヘッドライトやテールライトからの低照度とグラアの複合効果により、車両検出の失敗は最先端の物体検出モデルにより起こりやすい。
最先端のGANモデルは、赤外線画像から日中RGB画像に変換することにより、夜間における車両検出精度の向上を図っている。
論文 参考訳(メタデータ) (2022-09-20T15:56:52Z) - When the Sun Goes Down: Repairing Photometric Losses for All-Day Depth
Estimation [47.617222712429026]
既存の測光損失を昼夜両方の画像に有効にするための3つの手法の組み合わせについて述べる。
まず、連続するフレーム間で起こる光の変化を補うために、ピクセルごとの神経強度変換を導入する。
第2に,推定エゴモーションと深度によって引き起こされる再投影対応を補正するために,画素ごとの残留フローマップを推定する。
論文 参考訳(メタデータ) (2022-06-28T09:29:55Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
自律レースでは、天気は突然変化し、認識が著しく低下し、非効率な操作が引き起こされる。
悪天候の検知を改善するために、ディープラーニングベースのモデルは通常、そのような状況下でキャプチャされた広範なデータセットを必要とする。
本稿では,5つの最先端検出器のうち4つの性能向上を図るために,自動レース(CycleGANを用いた)における合成悪条件データセットを用いた手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T10:02:40Z) - Creating synthetic meteorology satellite visible light images during
night based on GAN method [0.0]
夜間に合成衛星可視光画像を作成するための深層学習に基づく手法を提案する。
具体的には,GAN(Generative Adversarial Networks)モデルを用いて,可視光画像を生成する。
ECMWF NWP製品とFY-4A気象衛星可視光および赤外チャネル日時に基づく実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2021-07-21T16:05:26Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - A Large-Scale, Time-Synchronized Visible and Thermal Face Dataset [62.193924313292875]
DEVCOM Army Research Laboratory Visible-Thermal Faceデータセット(ARL-VTF)を発表します。
395人の被験者から50万枚以上の画像が得られたARL-VTFデータセットは、これまでで最大の可視画像とサーマルフェイス画像の収集データだ。
本論文では,ALL-VTFデータセットを用いたサーマルフェースランドマーク検出とサーマル・トゥ・ヴィジブルフェース検証のベンチマーク結果と分析について述べる。
論文 参考訳(メタデータ) (2021-01-07T17:17:12Z) - Real-time Tropical Cyclone Intensity Estimation by Handling Temporally
Heterogeneous Satellite Data [33.528810128372704]
本稿では,GAN(Generative Adversarial Network)と畳み込みニューラルネットワーク(CNN)を組み合わせた新しいフレームワークを提案する。
実験結果から,ハイブリッドGAN-CNNフレームワークは最先端モデルに匹敵する精度を実現することが示された。
論文 参考訳(メタデータ) (2020-10-28T13:40:07Z) - Conditional Variational Image Deraining [158.76814157115223]
キャラクタリゼーション性能向上のための条件変分画像レイニング(CVID)ネットワーク
本研究では,各画像の降雨密度マップを推定するための空間密度推定(SDE)モジュールを提案する。
合成および実世界のデータセットを用いた実験により,提案したCVIDネットワークは,画像のデライニングにおける従来の決定論的手法よりもはるかに優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-04-23T11:51:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。