TIM: An Efficient Temporal Interaction Module for Spiking Transformer
- URL: http://arxiv.org/abs/2401.11687v3
- Date: Thu, 9 May 2024 06:32:45 GMT
- Title: TIM: An Efficient Temporal Interaction Module for Spiking Transformer
- Authors: Sicheng Shen, Dongcheng Zhao, Guobin Shen, Yi Zeng,
- Abstract summary: Spiking Neural Networks (SNNs) have gained prominence for their biological plausibility and computational efficiency.
The integration of attention mechanisms, inspired by advancements in neural network architectures, has led to the development of Spiking Transformers.
These have shown promise in enhancing SNNs' capabilities, particularly in the realms of both static and neuromorphic datasets.
We introduce the Temporal Interaction Module (TIM), a novel, convolution-based enhancement designed to augment the temporal data processing abilities within SNN architectures.
- Score: 5.74337858210191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs), as the third generation of neural networks, have gained prominence for their biological plausibility and computational efficiency, especially in processing diverse datasets. The integration of attention mechanisms, inspired by advancements in neural network architectures, has led to the development of Spiking Transformers. These have shown promise in enhancing SNNs' capabilities, particularly in the realms of both static and neuromorphic datasets. Despite their progress, a discernible gap exists in these systems, specifically in the Spiking Self Attention (SSA) mechanism's effectiveness in leveraging the temporal processing potential of SNNs. To address this, we introduce the Temporal Interaction Module (TIM), a novel, convolution-based enhancement designed to augment the temporal data processing abilities within SNN architectures. TIM's integration into existing SNN frameworks is seamless and efficient, requiring minimal additional parameters while significantly boosting their temporal information handling capabilities. Through rigorous experimentation, TIM has demonstrated its effectiveness in exploiting temporal information, leading to state-of-the-art performance across various neuromorphic datasets. The code is available at https://github.com/BrainCog-X/Brain-Cog/tree/main/examples/TIM.
Related papers
- Spiking Neural Networks for Temporal Processing: Status Quo and Future Prospects [41.8742357294068]
Spiking Neural Networks (SNNs) excel in handling data with high efficiency, owing to their rich neuronal dynamics and sparse activity patterns.
Given the recent surge in the development of SNNs, there is an urgent need for a comprehensive evaluation of their temporal processing capabilities.
arXiv Detail & Related papers (2025-02-13T16:17:57Z) - Enhanced Temporal Processing in Spiking Neural Networks for Static Object Detection Using 3D Convolutions [0.0]
Spiking Neural Networks (SNNs) are a class of network models capable of processingtemporal information.
This paper focuses on enhancing the SNNs unique ability to processtemporal information.
To improve the SNN handling of temporal information, this paper proposes replacing traditional 2D convolutions with 3D convolutions.
arXiv Detail & Related papers (2024-12-23T15:32:26Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - Stochastic Spiking Neural Networks with First-to-Spike Coding [7.955633422160267]
Spiking Neural Networks (SNNs) are known for their bio-plausibility and energy efficiency.
In this work, we explore the merger of novel computing and information encoding schemes in SNN architectures.
We investigate the tradeoffs of our proposal in terms of accuracy, inference latency, spiking sparsity, energy consumption, and datasets.
arXiv Detail & Related papers (2024-04-26T22:52:23Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution
and Attention for Spiking Neural Networks [7.422913384086416]
Spiking Neural Networks (SNNs), as one of the algorithmic models in neuromorphic computing, have gained a great deal of research attention owing to temporal processing capability.
Existing synaptic structures in SNNs are almost full-connections or spatial 2D convolution, neither which can extract temporal dependencies adequately.
We take inspiration from biological synapses and propose a synaptic connection SNN model, to enhance the synapse-temporal receptive fields of synaptic connections.
We show that endowing synaptic models with temporal dependencies can improve the performance of SNNs on classification tasks.
arXiv Detail & Related papers (2022-10-11T08:13:22Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - BackEISNN: A Deep Spiking Neural Network with Adaptive Self-Feedback and
Balanced Excitatory-Inhibitory Neurons [8.956708722109415]
Spiking neural networks (SNNs) transmit information through discrete spikes, which performs well in processing spatial-temporal information.
We propose a deep spiking neural network with adaptive self-feedback and balanced excitatory and inhibitory neurons (BackEISNN)
For the MNIST, FashionMNIST, and N-MNIST datasets, our model has achieved state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T08:38:31Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.