論文の概要: SFC: Shared Feature Calibration in Weakly Supervised Semantic
Segmentation
- arxiv url: http://arxiv.org/abs/2401.11719v1
- Date: Mon, 22 Jan 2024 06:43:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 14:56:59.603696
- Title: SFC: Shared Feature Calibration in Weakly Supervised Semantic
Segmentation
- Title(参考訳): SFC: 弱監視セマンティックセグメンテーションにおける共有特徴校正
- Authors: Xinqiao Zhao, Feilong Tang, Xiaoyang Wang, Jimin Xiao
- Abstract要約: 画像レベルの教師付きセマンティックセグメンテーションはアノテーションコストの低さから注目されている。
既存の手法は主にクラスマッピング(CAM)に頼り、セマンティックセグメンテーションモデルをトレーニングするための擬似ラベルを得る。
本研究は,学習データにおける長い尾の分布が,ヘッドクラスとテールクラス間の共有特徴により,ヘッドクラスとアンダークラスの重みを過剰に活性化し,テールクラスとアンダークラスの重み付けによって計算されたCAMを生じさせることを示す最初の試みである。
- 参考スコア(独自算出の注目度): 28.846513129022803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-level weakly supervised semantic segmentation has received increasing
attention due to its low annotation cost. Existing methods mainly rely on Class
Activation Mapping (CAM) to obtain pseudo-labels for training semantic
segmentation models. In this work, we are the first to demonstrate that
long-tailed distribution in training data can cause the CAM calculated through
classifier weights over-activated for head classes and under-activated for tail
classes due to the shared features among head- and tail- classes. This degrades
pseudo-label quality and further influences final semantic segmentation
performance. To address this issue, we propose a Shared Feature Calibration
(SFC) method for CAM generation. Specifically, we leverage the class prototypes
that carry positive shared features and propose a Multi-Scaled
Distribution-Weighted (MSDW) consistency loss for narrowing the gap between the
CAMs generated through classifier weights and class prototypes during training.
The MSDW loss counterbalances over-activation and under-activation by
calibrating the shared features in head-/tail-class classifier weights.
Experimental results show that our SFC significantly improves CAM boundaries
and achieves new state-of-the-art performances. The project is available at
https://github.com/Barrett-python/SFC.
- Abstract(参考訳): 画像レベルの弱い教師付き意味セグメンテーションはアノテーションコストの低さから注目を集めている。
既存の手法は主にクラスアクティベーションマッピング(CAM)を使用して意味セグメンテーションモデルをトレーニングするための擬似ラベルを取得する。
本研究は,学習データにおける長い尾の分布が,ヘッドクラスとテールクラス間の共有特徴により,ヘッドクラスとアンダークラスで過剰に活性化された分類器の重みによって計算されたCAMを,初めて示すものである。
これにより擬似ラベル品質が低下し、最終的なセマンティクスセグメンテーション性能にさらに影響を及ぼす。
そこで本研究では,CAM生成のための共有特徴校正(SFC)手法を提案する。
具体的には,正の共有機能を持つクラスプロトタイプを活用し,マルチスケール分布重み付き(msdw)一貫性損失を提案し,学習中のクラスプロトタイプと分類器重みによるカム間のギャップを狭める。
MSDW損失は、ヘッド/テールクラス分類器重みの共有特徴を校正することにより、過剰活性化と過活性化のバランスをとる。
実験の結果,我々のSFCはCAM境界を大幅に改善し,新しい最先端性能を実現していることがわかった。
プロジェクトはhttps://github.com/Barrett-python/SFCで入手できる。
関連論文リスト
- Memory-guided Network with Uncertainty-based Feature Augmentation for Few-shot Semantic Segmentation [12.653336728447654]
学習可能なメモリベクトルの集合からなるクラス共有メモリ(CSM)モジュールを提案する。
これらのメモリベクトルは、トレーニング中にベースクラスから要素オブジェクトパターンを学習し、トレーニングと推論の両方でクエリ機能を再エンコードする。
我々は、CSMとUFAを代表的FSS作品に統合し、広く使われているPASCAL-5$i$とCOCO-20$i$データセットの実験結果を得た。
論文 参考訳(メタデータ) (2024-06-01T19:53:25Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
本稿では,FS-PCSによる3Dポイント・クラウドセマンティックセマンティックセグメンテーションについて再検討する。
我々は、最先端の2つの重要な問題、前景の漏洩とスパースポイントの分布に焦点をあてる。
これらの問題に対処するために、新しいベンチマークを構築するための標準化されたFS-PCS設定を導入する。
論文 参考訳(メタデータ) (2024-03-01T15:14:47Z) - BroadCAM: Outcome-agnostic Class Activation Mapping for Small-scale
Weakly Supervised Applications [69.22739434619531]
そこで我々はBroadCAMと呼ばれる結果に依存しないCAMアプローチを提案する。
VOC2012でBroadCAM、WSSSでBCSS-WSSS、WSOLでOpenImages30kを評価することで、BroadCAMは優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-09-07T06:45:43Z) - Prediction Calibration for Generalized Few-shot Semantic Segmentation [101.69940565204816]
汎用Few-shot Semantic (GFSS) は、各画像ピクセルを、豊富なトレーニング例を持つベースクラスか、クラスごとにわずかに(例: 1-5)のトレーニングイメージを持つ新しいクラスのいずれかに分割することを目的としている。
我々は、融合したマルチレベル機能を用いて、分類器の最終予測をガイドするクロスアテンションモジュールを構築する。
私たちのPCNは、最先端の代替品よりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2022-10-15T13:30:12Z) - Towards Calibrated Hyper-Sphere Representation via Distribution Overlap
Coefficient for Long-tailed Learning [8.208237033120492]
ロングテール学習は、現実世界のシナリオにおいて、厳しいクラス不均衡の下で、ヘッドクラスがトレーニング手順を支配しているという課題に取り組むことを目的としている。
これを動機として、コサインに基づく分類器をフォン・ミセス・フィッシャー混合モデル(vMF)に一般化する。
分布重なり係数の計算により超球面上の表現品質を測定する。
論文 参考訳(メタデータ) (2022-08-22T03:53:29Z) - Saliency Guided Inter- and Intra-Class Relation Constraints for Weakly
Supervised Semantic Segmentation [66.87777732230884]
本稿では,活性化対象領域の拡大を支援するために,Salliency Guided Inter-およびIntra-Class Relation Constrained (I$2$CRC) フレームワークを提案する。
また,オブジェクトガイド付きラベルリファインメントモジュールを導入し,セグメンテーション予測と初期ラベルをフル活用し,優れた擬似ラベルを得る。
論文 参考訳(メタデータ) (2022-06-20T03:40:56Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
少数のラベル付きサンプルを与えられた未確認のクラスに適応できるモデルを学ぶことを目的としている。
最近のアプローチでは、特徴抽出器を事前訓練し、その後、エピソードなメタラーニングのための微調整を行う。
本研究は, 複数ショットの分類において, 横断的および再重み付き識別機能を実現するための戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T06:14:51Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
本稿では,FSSタスクに適合する2つの特徴的コントラスト学習手法を提案する。
第一の考え方は、プロトタイプの特徴空間におけるクラス内距離を減少させながら、クラス間距離を増やすことで、プロトタイプをより差別的にすることである。
提案手法は,PASCAL-5iおよびCOCO-20iデータセット上で,最先端のFSS手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-09T08:14:50Z) - Weakly supervised segmentation with cross-modality equivariant
constraints [7.757293476741071]
弱い教師付き学習は、セマンティックセグメンテーションにおける大きなラベル付きデータセットの必要性を軽減するための魅力的な代替手段として登場した。
本稿では,マルチモーダル画像シナリオにおける自己スーパービジョンを活用した新しい学習戦略を提案する。
私たちのアプローチは、同じ学習条件下で関連する最近の文学を上回ります。
論文 参考訳(メタデータ) (2021-04-06T13:14:20Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
本稿では,エンド・ツー・エンドの設定において,分類ネットワークと融合可能な効率的なローカライゼーションモジュールを提案する。
我々は,CUB200-2011,Stanford Cars,FGVC-Aircraftの3つのベンチマークデータセット上で,新しいモデルを評価する。
論文 参考訳(メタデータ) (2020-05-11T14:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。