Efficient and Generalized end-to-end Autonomous Driving System with Latent Deep Reinforcement Learning and Demonstrations
- URL: http://arxiv.org/abs/2401.11792v6
- Date: Sun, 16 Jun 2024 12:48:53 GMT
- Title: Efficient and Generalized end-to-end Autonomous Driving System with Latent Deep Reinforcement Learning and Demonstrations
- Authors: Zuojin Tang, Xiaoyu Chen, YongQiang Li, Jianyu Chen,
- Abstract summary: An intelligent driving system should dynamically formulate appropriate driving strategies based on the current environment and vehicle status.
This paper introduces an Efficient and Generalized end-to-end Autonomous Driving System (EGADS) for complex and varied scenarios.
- Score: 15.853453814447471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An intelligent driving system should dynamically formulate appropriate driving strategies based on the current environment and vehicle status while ensuring system security and reliability. However, methods based on reinforcement learning and imitation learning often suffer from high sample complexity, poor generalization, and low safety. To address these challenges, this paper introduces an Efficient and Generalized end-to-end Autonomous Driving System (EGADS) for complex and varied scenarios. The RL agent in our EGADS combines variational inference with normalizing flows, which are independent of distribution assumptions. This combination allows the agent to capture historical information relevant to driving in latent space effectively, thereby significantly reducing sample complexity. Additionally, we enhance safety by formulating robust safety constraints and improve generalization and performance by integrating RL with expert demonstrations. Experimental results demonstrate that, compared to existing methods, EGADS significantly reduces sample complexity, greatly improves safety performance, and exhibits strong generalization capabilities in complex urban scenarios. Particularly, we contributed an expert dataset collected through human expert steering wheel control, specifically using the G29 steering wheel.
Related papers
- Learning to Drive by Imitating Surrounding Vehicles [0.6612847014373572]
Imitation learning is a promising approach for training autonomous vehicles to navigate complex traffic environments.
We propose a data augmentation strategy that enhances imitation learning by leveraging the observed trajectories of nearby vehicles.
We evaluate our approach using the state-of-the-art learning-based planning method PLUTO on the nuPlan dataset and demonstrate that our augmentation method leads to improved performance in complex driving scenarios.
arXiv Detail & Related papers (2025-03-08T00:40:47Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.
A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - OWLed: Outlier-weighed Layerwise Pruning for Efficient Autonomous Driving Framework [3.8320050452121692]
We introduce OWLed, the Outlier-Weighed Layerwise Pruning for Efficient Autonomous Driving Framework.
Our method assigns non-uniform sparsity ratios to different layers based on the distribution of outlier features.
To ensure the compressed model adapts well to autonomous driving tasks, we incorporate driving environment data into both the calibration and pruning processes.
arXiv Detail & Related papers (2024-11-12T10:55:30Z) - Generalizing Cooperative Eco-driving via Multi-residual Task Learning [6.864745785996583]
Multi-residual Task Learning (MRTL) is a generic learning framework based on multi-task learning.
MRTL decomposes control into nominal components that are effectively solved by conventional control methods and residual terms.
We employ MRTL for fleet-level emission reduction in mixed traffic using autonomous vehicles as a means of system control.
arXiv Detail & Related papers (2024-03-07T05:25:34Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Imitation Is Not Enough: Robustifying Imitation with Reinforcement
Learning for Challenging Driving Scenarios [147.16925581385576]
We show how imitation learning combined with reinforcement learning can substantially improve the safety and reliability of driving policies.
We train a policy on over 100k miles of urban driving data, and measure its effectiveness in test scenarios grouped by different levels of collision likelihood.
arXiv Detail & Related papers (2022-12-21T23:59:33Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Learning to Drive Using Sparse Imitation Reinforcement Learning [0.5076419064097732]
We propose a hybrid end-to-end control policy that combines the sparse expert driving knowledge with reinforcement learning (RL) policy.
We experimentally validate the efficacy of proposed SIRL approach in a complex urban scenario within the CARLA simulator.
arXiv Detail & Related papers (2022-05-24T15:03:11Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - A Safe Hierarchical Planning Framework for Complex Driving Scenarios
based on Reinforcement Learning [23.007323699176467]
We propose a hierarchical behavior planning framework with a set of low-level safe controllers and a high-level reinforcement learning algorithm (H-CtRL) as a coordinator for the low-level controllers.
Safety is guaranteed by the low-level optimization/sampling-based controllers, while the high-level reinforcement learning algorithm makes H-CtRL an adaptive and efficient behavior planner.
The proposed H-CtRL is proved to be effective in various realistic simulation scenarios, with satisfying performance in terms of both safety and efficiency.
arXiv Detail & Related papers (2021-01-17T20:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.