State-Averaged Orbital-Optimized VQE: A quantum algorithm for the
democratic description of ground and excited electronic states
- URL: http://arxiv.org/abs/2401.11884v1
- Date: Mon, 22 Jan 2024 12:16:37 GMT
- Title: State-Averaged Orbital-Optimized VQE: A quantum algorithm for the
democratic description of ground and excited electronic states
- Authors: Martin Beseda and Silvie Ill\'esov\'a and Saad Yalouz and Bruno
Senjean
- Abstract summary: The SA-OO-VQE package aims to answer both problems with its hybrid quantum-classical conception based on a typical Variational Quantum Eigensolver approach.
The SA-OO-VQE has the ability to treat degenerate (or quasi-degenerate) states on the same footing, thus avoiding known numerical optimization problems around avoided crossings or conical intersections.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The electronic structure problem is one of the main problems in modern
theoretical chemistry. While there are many already-established methods both
for the problem itself and its applications like semi-classical or quantum
dynamics, it remains a computationally demanding task, effectively limiting the
size of solved problems. Fortunately, it seems, that offloading some parts of
the computation to Quantum Processing Units may offer significant speed-up,
often referred to as quantum supremacy or quantum advantage. Together with the
potential advantage, this approach simultaneously presents several problems,
most notably naturally occurring quantum decoherence, hereafter denoted as
quantum noise and lack of large-scale quantum computers, making it necessary to
focus on Noisy-Intermediate Scale Quantum computers when developing algorithms
aspiring to near-term applications. SA-OO-VQE package aims to answer both these
problems with its hybrid quantum-classical conception based on a typical
Variational Quantum Eigensolver approach, as only a part of the algorithm
utilizes offload to QPUs and the rest is performed on a classical computer,
thus partially avoiding both quantum noise and the lack of quantum bits. The
SA-OO-VQE has the ability to treat degenerate (or quasi-degenerate) states on
the same footing, thus avoiding known numerical optimization problems arising
in state-specific approaches around avoided crossings or conical intersections.
Related papers
- Unlocking Quantum Optimization: A Use Case Study on NISQ Systems [0.0]
This paper considers two industrial relevant use cases: one in the realm of optimizing charging schedules for electric vehicles, the other concerned with the optimization of truck routes.
Our central contribution are systematic series of examples derived from these uses cases that we execute on different processors of the gate-based quantum computers of IBM as well as on the quantum annealer of D-Wave.
arXiv Detail & Related papers (2024-04-10T17:08:07Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
We propose a hybrid quantum-classical algorithm that integrates quantum computing and quantum Monte Carlo.
Our work paves the way to solving practical problems with intermediatescale and early-fault tolerant quantum computers.
arXiv Detail & Related papers (2022-06-21T14:26:24Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Variational Quantum Algorithms [1.9486734911696273]
Quantum computers promise to unlock applications such as large quantum systems or solving large-scale linear algebra problems.
Currently available quantum devices have serious constraints, including limited qubit numbers and noise processes that limit circuit depth.
Variational Quantum Algorithms (VQAs), which employ a classical simulation to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints.
arXiv Detail & Related papers (2020-12-16T21:00:46Z) - Limitations of optimization algorithms on noisy quantum devices [0.0]
We present a transparent way of comparing classical algorithms to quantum ones running on near-term quantum devices.
Our approach is based on the combination of entropic inequalities that determine how fast the quantum state converges to the fixed point of the noise model.
arXiv Detail & Related papers (2020-09-11T17:07:26Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.