論文の概要: Momentum-SAM: Sharpness Aware Minimization without Computational
Overhead
- arxiv url: http://arxiv.org/abs/2401.12033v1
- Date: Mon, 22 Jan 2024 15:19:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 13:35:08.906168
- Title: Momentum-SAM: Sharpness Aware Minimization without Computational
Overhead
- Title(参考訳): Momentum-SAM: 計算オーバーヘッドを伴わないシャープネスの最小化
- Authors: Marlon Becker, Frederick Altrock, Benjamin Risse
- Abstract要約: 本稿では,蓄積された運動量ベクトルの方向にパラメータを摂動させ,計算オーバーヘッドやメモリ要求を伴わずに低シャープ性を実現するMomentum-SAMを提案する。
我々は、MSAMを詳細に評価し、NAG、SAM、MSAMの分離可能なメカニズムの学習最適化と一般化に関する知見を明らかにする。
- 参考スコア(独自算出の注目度): 0.6577148087211809
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recently proposed optimization algorithm for deep neural networks
Sharpness Aware Minimization (SAM) suggests perturbing parameters before
gradient calculation by a gradient ascent step to guide the optimization into
parameter space regions of flat loss. While significant generalization
improvements and thus reduction of overfitting could be demonstrated, the
computational costs are doubled due to the additionally needed gradient
calculation, making SAM unfeasible in case of limited computationally
capacities. Motivated by Nesterov Accelerated Gradient (NAG) we propose
Momentum-SAM (MSAM), which perturbs parameters in the direction of the
accumulated momentum vector to achieve low sharpness without significant
computational overhead or memory demands over SGD or Adam. We evaluate MSAM in
detail and reveal insights on separable mechanisms of NAG, SAM and MSAM
regarding training optimization and generalization. Code is available at
https://github.com/MarlonBecker/MSAM.
- Abstract(参考訳): 最近提案された深層ニューラルネットワークのシャープネス認識最小化アルゴリズム(sam)は、勾配上昇ステップによる勾配計算前のパラメータの摂動を示唆し、平坦損失のパラメータ空間領域への最適化を導く。
大幅な一般化と過剰フィッティングの削減が実証できたが、追加の勾配計算により計算コストが倍増し、計算能力の制限がある場合にはsamは実現不可能となった。
ネステロフ加速勾配 (nag) に動機づけられ, 累積運動量ベクトルの方向のパラメータを摂動させ, sgd や adam に対する計算オーバーヘッドやメモリ要求の増大を伴わずに低シャープ性を実現する運動量-sam (msam) を提案する。
我々は、MSAMを詳細に評価し、NAG、SAM、MSAMの分離可能なメカニズムの学習最適化と一般化に関する知見を明らかにする。
コードはhttps://github.com/MarlonBecker/MSAMで入手できる。
関連論文リスト
- Reweighting Local Mimina with Tilted SAM [24.689230137012174]
シャープネス・アウェアの最小化(SAM)は、平坦な最小値を求めることにより、無限大の一般化性能を向上させることが実証されている。
本研究では,より平坦で損失の少ない局所解に対して,効率的に高い優先度を付与するTSAM(TSAM)を提案する。
論文 参考訳(メタデータ) (2024-10-30T02:49:48Z) - Asymptotic Unbiased Sample Sampling to Speed Up Sharpness-Aware Minimization [17.670203551488218]
シャープネス認識最小化(AUSAM)を加速する漸近的アンバイアスサンプリングを提案する。
AUSAMはモデルの一般化能力を維持しながら、計算効率を大幅に向上させる。
プラグアンドプレイでアーキテクチャに依存しない手法として、我々のアプローチはSAMを様々なタスクやネットワークで継続的に加速させる。
論文 参考訳(メタデータ) (2024-06-12T08:47:44Z) - Friendly Sharpness-Aware Minimization [62.57515991835801]
シャープネス・アウェアの最小化(SAM)は、トレーニング損失とロスシャープネスの両方を最小化することにより、ディープニューラルネットワークトレーニングの改善に役立っている。
対向性摂動におけるバッチ特異的勾配雑音の主な役割,すなわち現在のミニバッチ勾配について検討する。
逆勾配雑音成分を分解することにより、全勾配のみに依存すると一般化が低下し、除くと性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-03-19T01:39:33Z) - Systematic Investigation of Sparse Perturbed Sharpness-Aware
Minimization Optimizer [158.2634766682187]
ディープニューラルネットワークは、複雑で非構造的なロスランドスケープのため、しばしば一般化の貧弱さに悩まされる。
SharpnessAware Minimization (SAM) は、摂動を加える際の景観の変化を最小限に抑えることで損失を平滑化するポピュラーなソリューションである。
本稿では,二元マスクによる摂動を効果的かつ効果的に行う訓練手法であるスパースSAMを提案する。
論文 参考訳(メタデータ) (2023-06-30T09:33:41Z) - AdaSAM: Boosting Sharpness-Aware Minimization with Adaptive Learning
Rate and Momentum for Training Deep Neural Networks [76.90477930208982]
シャープネス認識(SAM)は、ディープニューラルネットワークのトレーニングにおいて、より一般的なものにするため、広範囲に研究されている。
AdaSAMと呼ばれる適応的な学習摂動と運動量加速度をSAMに統合することはすでに検討されている。
いくつかのNLPタスクにおいて,SGD,AMS,SAMsGradと比較して,AdaSAMが優れた性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2023-03-01T15:12:42Z) - K-SAM: Sharpness-Aware Minimization at the Speed of SGD [83.78737278889837]
シャープネス・アウェアの最小化(SAM)は、ディープニューラルネットワークの精度を向上させるための堅牢な手法として登場した。
SAMは実際に高い計算コストを発生させ、バニラSGDの2倍の計算を必要とする。
そこで本研究では,最大損失を持つトップkサンプルのみを用いてSAMの両段階の勾配を計算することを提案する。
論文 参考訳(メタデータ) (2022-10-23T21:49:58Z) - Sharpness-Aware Training for Free [163.1248341911413]
シャープネスを意識した最小化(SAM)は、損失ランドスケープの幾何学を反映したシャープネス尺度の最小化が一般化誤差を著しく減少させることを示した。
シャープネス・アウェア・トレーニング・フリー(SAF)は、シャープランドスケープをベース上でほぼゼロの計算コストで軽減する。
SAFは、改善された能力で最小限の平らな収束を保証する。
論文 参考訳(メタデータ) (2022-05-27T16:32:43Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
本稿では,SAM s の効率を高コストで向上する高効率シャープネス認識最小化器 (M) を提案する。
Mには、Stochastic Weight PerturbationとSharpness-Sensitive Data Selectionという、2つの新しい効果的なトレーニング戦略が含まれている。
我々は、CIFARとImageNetデータセットの広範な実験を通して、ESAMはSAMよりも100%余分な計算を40%のvis-a-visベースに必要とせずに効率を向上させることを示した。
論文 参考訳(メタデータ) (2021-10-07T02:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。