論文の概要: Preconditioned Sharpness-Aware Minimization: Unifying Analysis and a Novel Learning Algorithm
- arxiv url: http://arxiv.org/abs/2501.06603v1
- Date: Sat, 11 Jan 2025 18:05:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:23:08.670088
- Title: Preconditioned Sharpness-Aware Minimization: Unifying Analysis and a Novel Learning Algorithm
- Title(参考訳): 事前条件付きシャープネス認識最小化:統一解析と新しい学習アルゴリズム
- Authors: Yilang Zhang, Bingcong Li, Georgios B. Giannakis,
- Abstract要約: シャープネスを意識した最小化(SAM)は、ディープニューラルネットワークベースの学習の一般化性を改善する強力なツールとして登場した。
この寄与はプリコンディショニング(pre)を利用してSAM変種を統一し、統一収束解析だけでなく、貴重な洞察を提供する。
informationSAMと呼ばれる新しいアルゴリズムを導入し、ノイズ推定による勾配の調整によりSAMのいわゆる逆モデル劣化問題に対処する。
- 参考スコア(独自算出の注目度): 39.656014609027494
- License:
- Abstract: Targeting solutions over `flat' regions of the loss landscape, sharpness-aware minimization (SAM) has emerged as a powerful tool to improve generalizability of deep neural network based learning. While several SAM variants have been developed to this end, a unifying approach that also guides principled algorithm design has been elusive. This contribution leverages preconditioning (pre) to unify SAM variants and provide not only unifying convergence analysis, but also valuable insights. Building upon preSAM, a novel algorithm termed infoSAM is introduced to address the so-called adversarial model degradation issue in SAM by adjusting gradients depending on noise estimates. Extensive numerical tests demonstrate the superiority of infoSAM across various benchmarks.
- Abstract(参考訳): ロスランドスケープの「フラット」領域を対象とするソリューションとして、シャープネス認識最小化(SAM)が、ディープニューラルネットワークベースの学習の一般化性向上のための強力なツールとして登場した。
この目的のためにいくつかのSAM変種が開発されているが、アルゴリズム設計の原則を導く統一的なアプローチが提案されている。
この寄与はプリコンディショニング(pre)を利用してSAM変種を統一し、統一収束解析だけでなく、貴重な洞察を提供する。
preSAMに基づいて、インフォSAMと呼ばれる新しいアルゴリズムを導入し、ノイズ推定に応じて勾配を調整することでSAMのいわゆる逆モデル劣化問題に対処する。
大規模な数値実験は、様々なベンチマークでインフォSAMの優位性を実証している。
関連論文リスト
- Asymptotic Unbiased Sample Sampling to Speed Up Sharpness-Aware Minimization [17.670203551488218]
シャープネス認識最小化(AUSAM)を加速する漸近的アンバイアスサンプリングを提案する。
AUSAMはモデルの一般化能力を維持しながら、計算効率を大幅に向上させる。
プラグアンドプレイでアーキテクチャに依存しない手法として、我々のアプローチはSAMを様々なタスクやネットワークで継続的に加速させる。
論文 参考訳(メタデータ) (2024-06-12T08:47:44Z) - Friendly Sharpness-Aware Minimization [62.57515991835801]
シャープネス・アウェアの最小化(SAM)は、トレーニング損失とロスシャープネスの両方を最小化することにより、ディープニューラルネットワークトレーニングの改善に役立っている。
対向性摂動におけるバッチ特異的勾配雑音の主な役割,すなわち現在のミニバッチ勾配について検討する。
逆勾配雑音成分を分解することにより、全勾配のみに依存すると一般化が低下し、除くと性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-03-19T01:39:33Z) - Stabilizing Sharpness-aware Minimization Through A Simple Renormalization Strategy [12.050160495730381]
SAM ( sharpness-aware generalization) は性能向上に驚くべき効果があることから注目されている。
本稿では, 安定SAM (SSAM) と呼ばれる単純な再正規化戦略を提案する。
我々の戦略は実装が容易で、SAMとその変種と統合するのに十分な柔軟性があり、ほとんど計算コストがかからない。
論文 参考訳(メタデータ) (2024-01-14T10:53:36Z) - Systematic Investigation of Sparse Perturbed Sharpness-Aware
Minimization Optimizer [158.2634766682187]
ディープニューラルネットワークは、複雑で非構造的なロスランドスケープのため、しばしば一般化の貧弱さに悩まされる。
SharpnessAware Minimization (SAM) は、摂動を加える際の景観の変化を最小限に抑えることで損失を平滑化するポピュラーなソリューションである。
本稿では,二元マスクによる摂動を効果的かつ効果的に行う訓練手法であるスパースSAMを提案する。
論文 参考訳(メタデータ) (2023-06-30T09:33:41Z) - AdaSAM: Boosting Sharpness-Aware Minimization with Adaptive Learning
Rate and Momentum for Training Deep Neural Networks [76.90477930208982]
シャープネス認識(SAM)は、ディープニューラルネットワークのトレーニングにおいて、より一般的なものにするため、広範囲に研究されている。
AdaSAMと呼ばれる適応的な学習摂動と運動量加速度をSAMに統合することはすでに検討されている。
いくつかのNLPタスクにおいて,SGD,AMS,SAMsGradと比較して,AdaSAMが優れた性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2023-03-01T15:12:42Z) - On Statistical Properties of Sharpness-Aware Minimization: Provable
Guarantees [5.91402820967386]
シャープネス・アウェアの最小化 (SAM) が一般化する理由について, 新たな理論的説明を行う。
SAMはシャープな問題と非シャープな問題の両方に特に適している。
本研究は,ディープニューラルネットワークを用いた数値実験により検証した。
論文 参考訳(メタデータ) (2023-02-23T07:52:31Z) - mSAM: Micro-Batch-Averaged Sharpness-Aware Minimization [20.560184120992094]
シャープネス・アウェアの最小化手法は、フラットな最小化に向けて勾配降下法を操る基本損失関数を変更する。
我々は最近開発されたフラットネス解析のためのよく研究された一般的なフレームワークを拡張し、SAMがSGDよりもフラットなミニマを達成し、mSAMがSAMよりもフラットなミニマを達成できることを理論的に示す。
論文 参考訳(メタデータ) (2023-02-19T23:27:12Z) - Improved Deep Neural Network Generalization Using m-Sharpness-Aware
Minimization [14.40189851070842]
シャープネス・アウェア最小化(SAM)は、基礎となる損失関数を修正し、フラットなミニマへ導出する方法を導出する。
近年の研究ではmSAMがSAMよりも精度が高いことが示唆されている。
本稿では,様々なタスクやデータセットにおけるmSAMの包括的評価について述べる。
論文 参考訳(メタデータ) (2022-12-07T00:37:55Z) - Sharpness-Aware Training for Free [163.1248341911413]
シャープネスを意識した最小化(SAM)は、損失ランドスケープの幾何学を反映したシャープネス尺度の最小化が一般化誤差を著しく減少させることを示した。
シャープネス・アウェア・トレーニング・フリー(SAF)は、シャープランドスケープをベース上でほぼゼロの計算コストで軽減する。
SAFは、改善された能力で最小限の平らな収束を保証する。
論文 参考訳(メタデータ) (2022-05-27T16:32:43Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
本稿では,SAM s の効率を高コストで向上する高効率シャープネス認識最小化器 (M) を提案する。
Mには、Stochastic Weight PerturbationとSharpness-Sensitive Data Selectionという、2つの新しい効果的なトレーニング戦略が含まれている。
我々は、CIFARとImageNetデータセットの広範な実験を通して、ESAMはSAMよりも100%余分な計算を40%のvis-a-visベースに必要とせずに効率を向上させることを示した。
論文 参考訳(メタデータ) (2021-10-07T02:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。