DITTO: Diffusion Inference-Time T-Optimization for Music Generation
- URL: http://arxiv.org/abs/2401.12179v2
- Date: Mon, 3 Jun 2024 17:37:53 GMT
- Title: DITTO: Diffusion Inference-Time T-Optimization for Music Generation
- Authors: Zachary Novack, Julian McAuley, Taylor Berg-Kirkpatrick, Nicholas J. Bryan,
- Abstract summary: Diffusion Inference-Time T-Optimization (DITTO) is a frame-work for controlling pre-trained text-to-music diffusion models at inference-time.
We demonstrate a surprisingly wide-range of applications for music generation including inpainting, outpainting, and looping as well as intensity, melody, and musical structure control.
- Score: 49.90109850026932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Diffusion Inference-Time T-Optimization (DITTO), a general-purpose frame-work for controlling pre-trained text-to-music diffusion models at inference-time via optimizing initial noise latents. Our method can be used to optimize through any differentiable feature matching loss to achieve a target (stylized) output and leverages gradient checkpointing for memory efficiency. We demonstrate a surprisingly wide-range of applications for music generation including inpainting, outpainting, and looping as well as intensity, melody, and musical structure control - all without ever fine-tuning the underlying model. When we compare our approach against related training, guidance, and optimization-based methods, we find DITTO achieves state-of-the-art performance on nearly all tasks, including outperforming comparable approaches on controllability, audio quality, and computational efficiency, thus opening the door for high-quality, flexible, training-free control of diffusion models. Sound examples can be found at https://DITTO-Music.github.io/web/.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - DITTO-2: Distilled Diffusion Inference-Time T-Optimization for Music Generation [43.61383132919089]
Controllable music generation methods are critical for human-centered AI-based music creation.
We propose Distilled Diffusion Inference-Time T -Optimization (or DITTO-2), a new method to speed up inference-time optimization-based control.
arXiv Detail & Related papers (2024-05-30T17:40:11Z) - Music Consistency Models [31.415900049111023]
We present Music Consistency Models (textttMusicCM), which leverages the concept of consistency models to efficiently synthesize mel-spectrogram for music clips.
Building upon existing text-to-music diffusion models, the textttMusicCM model incorporates consistency distillation and adversarial discriminator training.
Experimental results reveal the effectiveness of our model in terms of computational efficiency, fidelity, and naturalness.
arXiv Detail & Related papers (2024-04-20T11:52:30Z) - Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion
Latent Aligners [69.70590867769408]
Video and audio content creation serves as the core technique for the movie industry and professional users.
Existing diffusion-based methods tackle video and audio generation separately, which hinders the technique transfer from academia to industry.
In this work, we aim at filling the gap, with a carefully designed optimization-based framework for cross-visual-audio and joint-visual-audio generation.
arXiv Detail & Related papers (2024-02-27T17:57:04Z) - The Missing U for Efficient Diffusion Models [3.712196074875643]
Diffusion Probabilistic Models yield record-breaking performance in tasks such as image synthesis, video generation, and molecule design.
Despite their capabilities, their efficiency, especially in the reverse process, remains a challenge due to slow convergence rates and high computational costs.
We introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models.
arXiv Detail & Related papers (2023-10-31T00:12:14Z) - Towards More Accurate Diffusion Model Acceleration with A Timestep
Aligner [84.97253871387028]
A diffusion model, which is formulated to produce an image using thousands of denoising steps, usually suffers from a slow inference speed.
We propose a timestep aligner that helps find a more accurate integral direction for a particular interval at the minimum cost.
Experiments show that our plug-in design can be trained efficiently and boost the inference performance of various state-of-the-art acceleration methods.
arXiv Detail & Related papers (2023-10-14T02:19:07Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
We reformulate the SED problem by taking a generative learning perspective.
Specifically, we aim to generate sound temporal boundaries from noisy proposals in a denoising diffusion process.
During training, our model learns to reverse the noising process by converting noisy latent queries to the groundtruth versions.
arXiv Detail & Related papers (2023-08-14T17:29:41Z) - Speech Enhancement and Dereverberation with Diffusion-based Generative
Models [14.734454356396157]
We present a detailed overview of the diffusion process that is based on a differential equation.
We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates.
In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models.
arXiv Detail & Related papers (2022-08-11T13:55:12Z) - CDLNet: Noise-Adaptive Convolutional Dictionary Learning Network for
Blind Denoising and Demosaicing [4.975707665155918]
Unrolled optimization networks present an interpretable alternative to constructing deep neural networks.
We propose an unrolled convolutional dictionary learning network (CDLNet) and demonstrate its competitive denoising and demosaicing (JDD) performance.
Specifically, we show that the proposed model outperforms state-of-the-art fully convolutional denoising and JDD models when scaled to a similar parameter count.
arXiv Detail & Related papers (2021-12-02T01:23:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.