論文の概要: Learning Dynamics from Multicellular Graphs with Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2401.12196v3
- Date: Mon, 11 Nov 2024 16:40:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:03:15.836267
- Title: Learning Dynamics from Multicellular Graphs with Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークを用いたマルチセルグラフからの学習ダイナミクス
- Authors: Haiqian Yang, Florian Meyer, Shaoxun Huang, Liu Yang, Cristiana Lungu, Monilola A. Olayioye, Markus J. Buehler, Ming Guo,
- Abstract要約: グラフニューラルネットワーク (GNN) を用いて, セル位置の静的スナップショットから, 多細胞集団の動きを推定できることを示す。
- 参考スコア(独自算出の注目度): 7.263827692589625
- License:
- Abstract: Multicellular self-assembly into functional structures is a dynamic process that is critical in the development and diseases, including embryo development, organ formation, tumor invasion, and others. Being able to infer collective cell migratory dynamics from their static configuration is valuable for both understanding and predicting these complex processes. However, the identification of structural features that can indicate multicellular motion has been difficult, and existing metrics largely rely on physical instincts. Here we show that using a graph neural network (GNN), the motion of multicellular collectives can be inferred from a static snapshot of cell positions, in both experimental and synthetic datasets.
- Abstract(参考訳): 機能構造への多細胞自己組み立ては、胚の発生、臓器形成、腫瘍の浸潤など、発達と疾患に重要な動的なプロセスである。
静的な構成から集合細胞の移動力学を推測できることは、これらの複雑なプロセスの理解と予測の両方に有用である。
しかし、多細胞運動を示す構造的特徴の同定は困難であり、既存の指標は物理的本能に大きく依存している。
ここでは、グラフニューラルネットワーク(GNN)を用いて、実験と合成の両方のデータセットにおいて、細胞位置の静的スナップショットから、多細胞集団の動きを推定できることを示す。
関連論文リスト
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
しきい値単位の動的代替として人工内蔵ニューロン(AKOrN)を導入する。
このアイデアは、幅広いタスクにまたがってパフォーマンス改善をもたらすことを示しています。
これらの経験的結果は、神経表現の最も基本的なレベルにおいて、私たちの仮定の重要性を示していると信じている。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Multicell-Fold: geometric learning in folding multicellular life [0.34952465649465553]
細胞群が特定の構造にどのように折り畳むかは、生物がどのように形成されるかを定義する生物学の中心的な問題である。
マルチセルの折り畳みや胚発生を予測できる幾何学的深層学習モデルを提案する。
我々は,4次元形態素配列アライメントの解釈と局所的な細胞再構成の予測という,2つの重要な課題を達成するために,我々のモデルをうまく利用した。
論文 参考訳(メタデータ) (2024-07-09T17:21:49Z) - Engineering morphogenesis of cell clusters with differentiable programming [2.0690546196799042]
我々は,発達モデルにおいて,創発的,システムレベルの特性をもたらす局所的相互作用規則と遺伝的ネットワークを発見する。
複雑な発達シナリオにおいて,細胞間相互作用と遺伝的ネットワークのパラメータを同時に学習できることが示される。
論文 参考訳(メタデータ) (2024-07-08T18:05:11Z) - Integrating GNN and Neural ODEs for Estimating Two-Body Interactions in Mixed-Species Collective Motion [0.0]
本稿では,観測軌道から基礎となる運動方程式を推定するための新しいディープラーニングフレームワークを提案する。
本フレームワークは,グラフニューラルネットワークとニューラルディファレンシャル方程式を統合し,二体相互作用の効果的な予測を可能にする。
論文 参考訳(メタデータ) (2024-05-26T09:47:17Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Zyxin is all you need: machine learning adherent cell mechanics [0.0]
データ駆動型生体物理モデリング手法を開発し、接着細胞の力学的挙動を学習する。
まず、細胞骨格タンパク質の画像から付着細胞が生成する力を予測するためにニューラルネットワークを訓練する。
次に、我々は、細胞力のデータ駆動モデルを構築するのに役立つ2つのアプローチ(一つは物理学によって明示的に制約された、もう一つは連続体)を開発します。
論文 参考訳(メタデータ) (2023-03-01T02:08:40Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
論文 参考訳(メタデータ) (2021-10-15T17:55:04Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。