論文の概要: Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity
- arxiv url: http://arxiv.org/abs/2110.08242v1
- Date: Fri, 15 Oct 2021 17:55:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-11 10:02:38.168042
- Title: Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity
- Title(参考訳): スパイキングニューロン細胞オートマトンと神経活動のエミュレートのためのネットワークの進化
- Authors: J{\o}rgen Jensen Farner, H{\aa}kon Weydahl, Ruben Jahren, Ola Huse
Ramstad, Stefano Nichele, Kristine Heiney
- Abstract要約: 我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuro-inspired models and systems have great potential for applications in
unconventional computing. Often, the mechanisms of biological neurons are
modeled or mimicked in simulated or physical systems in an attempt to harness
some of the computational power of the brain. However, the biological
mechanisms at play in neural systems are complicated and challenging to capture
and engineer; thus, it can be simpler to turn to a data-driven approach to
transfer features of neural behavior to artificial substrates. In the present
study, we used an evolutionary algorithm (EA) to produce spiking neural systems
that emulate the patterns of behavior of biological neurons in vitro. The aim
of this approach was to develop a method of producing models capable of
exhibiting complex behavior that may be suitable for use as computational
substrates. Our models were able to produce a level of network-wide synchrony
and showed a range of behaviors depending on the target data used for their
evolution, which was from a range of neuronal culture densities and maturities.
The genomes of the top-performing models indicate the excitability and density
of connections in the model play an important role in determining the
complexity of the produced activity.
- Abstract(参考訳): ニューロインスパイアされたモデルとシステムは、非従来型コンピューティングの応用に大きな可能性を持っている。
しばしば、生体ニューロンのメカニズムは、脳の計算能力を利用するためにシミュレーションまたは物理的システムでモデル化または模倣される。
しかし、神経系における生物学的メカニズムは、キャプチャーとエンジニアリングが複雑で難しいため、人工基板への神経行動の特徴を伝達するためのデータ駆動アプローチに移行するのがより簡単である。
本研究では,生体内ニューロンの行動パターンをエミュレートするスパイキング神経系を構築するために進化的アルゴリズム(EA)を用いた。
このアプローチの目的は、計算基板としての使用に適した複雑な挙動を示すことができるモデルを生成する方法を開発することである。
我々のモデルは、ネットワーク全体の同期のレベルを生成でき、その進化に使用されるターゲットデータによって、様々な神経文化の密度と成熟度から、様々な行動を示すことができた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
関連論文リスト
- Exploring Biological Neuronal Correlations with Quantum Generative Models [0.0]
生体神経活動の空間的・時間的相関を捉える合成データを生成するための量子生成モデルフレームワークを提案する。
本モデルは,従来の手法に比べてトレーニング可能なパラメータが少なく,信頼性の高い結果が得られることを示す。
論文 参考訳(メタデータ) (2024-09-13T18:00:06Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
最先端のシステム神経科学実験は大規模なマルチモーダルデータを生み出し、これらのデータセットは分析のための新しいツールを必要とする。
視覚領域と言語領域における大きな事前学習モデルの成功に触発されて、我々は大規模な細胞分解性神経スパイクデータの解析を自己回帰生成問題に再構成した。
我々はまず、シミュレーションデータセットでNeuroformerを訓練し、本質的なシミュレートされた神経回路の動作を正確に予測し、方向を含む基盤となる神経回路の接続性を推定した。
論文 参考訳(メタデータ) (2023-10-31T20:17:32Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
我々は,ネットワーク相互作用から生じる機能を明らかにする上で,計算モデルが重要なツールであると主張している。
ここでは、スパイキングニューロン、統合ニューロン、発火ニューロンを含むいくつかのモデルのクラスについてレビューする。
これらの研究は、人工知能アルゴリズムの今後の発展と、脳のプロセスの理解の検証に役立つことを願っている。
論文 参考訳(メタデータ) (2022-03-29T10:28:01Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。