Identifying gap-closings in open non-Hermitian systems by Biorthogonal
Polarization
- URL: http://arxiv.org/abs/2401.12213v2
- Date: Thu, 29 Feb 2024 20:28:35 GMT
- Title: Identifying gap-closings in open non-Hermitian systems by Biorthogonal
Polarization
- Authors: Ipsita Mandal
- Abstract summary: We investigate gap-closings in one- and two-dimensional tight-binding models with two bands, containing non-Hermitian hopping terms, and open boundary conditions imposed along one direction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate gap-closings in one- and two-dimensional tight-binding models
with two bands, containing non-Hermitian hopping terms, and open boundary
conditions (OBCs) imposed along one direction. We compare the bulk OBC spectra
with the periodic boundary condition (PBC) spectra, pointing out that they do
not coincide, which is an intrinsic characteristic of non-Hermitian systems.
The non-Hermiticity, thus, results in the failure of the familiar notions of
bulk-boundary correspondence found for Hermitian systems. This necessitates the
search for topological invariants which can characterize gap-closings in open
non-Hermitian systems correctly and unambiguously. We elucidate the behaviour
of two possible candidates applicable for one-dimensional slices -- (1) the sum
of winding numbers for the two bands defined on a generalized Brillouin zone
and (2) the biorthogonal polarization (BP). While the former shows
jumps/discontinuities for some of the non-Hermitian systems studied here, at
points when an edge mode enters the bulk states and becomes delocalized, it
does not maintain quantized values in a given topological phase. On the
contrary, BP shows jumps at phase transitions, and takes the quantized value of
one or zero, which corresponds to whether an actual edge mode exists or whether
that mode is delocalized and absorbed within the bulk (not being an edge mode
anymore).
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Non-Hermitian extended midgap states and bound states in the continuum [0.0]
We find two flavours of bound states in the continuum, both stable even in the absence of chiral symmetry.
Results clarify fundamental aspects of topology, and symmetry in the light of different approaches to the anomalous non-Hermitan bulk-boundary correspondence.
arXiv Detail & Related papers (2023-10-27T16:58:04Z) - Topological characterization of special edge modes from the winding of
relative phase [0.0]
Inversion or chiral symmetry broken SSH model is an example of a system where one-sided edge state with finite energy appears at one end of the open chain.
We introduce a concept of relative phase between the components of a two-component spinor and define a winding number by the change of this relative phase over the one-dimensional Brillouin zone.
We extend this analysis to a two dimensional case where we characterize the non-trivial phase, hosting gapped one-sided edge mode, by the winding in relative phase only along a certain axis in the Brillouin zone.
arXiv Detail & Related papers (2023-06-13T19:43:04Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Detecting bulk and edge exceptional points in non-Hermitian systems
through generalized Petermann factors [7.371841894852217]
Non-orthogonality in non-Hermitian quantum systems gives rise to tremendous exotic quantum phenomena.
We introduce an interesting quantity (denoted as $eta$) as a new variant of the Petermann factor to measure non-unitarity.
arXiv Detail & Related papers (2022-08-31T16:24:03Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Gain/loss effects on spin-orbit coupled ultracold atoms in
two-dimensional optical lattices [0.5249805590164902]
We investigate the corresponding non-Hermitian tight-binding model and evaluate the gain/loss effects on various properties of the system.
We find that the conventional bulk-boundary correspondence does not break down with only on-site gain/loss due to the lack of non-Hermitian skin effect.
Given the technical accessibility of state-dependent atom loss, this model could be realized in current cold-atom experiments.
arXiv Detail & Related papers (2022-01-04T16:00:30Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Multipartite spatial entanglement generated by concurrent nonlinear
processes [91.3755431537592]
Continuous variables multipartite entanglement is a key resource for quantum technologies.
This work considers the multipartite entanglement generated in separated spatial modes of the same light beam by three different parametric sources.
arXiv Detail & Related papers (2021-11-09T17:15:13Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.