論文の概要: Fine-tuning Large Language Models for Multigenerator, Multidomain, and
Multilingual Machine-Generated Text Detection
- arxiv url: http://arxiv.org/abs/2401.12326v1
- Date: Mon, 22 Jan 2024 19:39:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 17:43:10.812966
- Title: Fine-tuning Large Language Models for Multigenerator, Multidomain, and
Multilingual Machine-Generated Text Detection
- Title(参考訳): マルチジェネレータ、マルチドメイン、多言語機械生成テキスト検出のための微調整大言語モデル
- Authors: Feng Xiong, Thanet Markchom, Ziwei Zheng, Subin Jung, Varun Ojha,
Huizhi Liang
- Abstract要約: SemEval-2024 Task 8は、多種多様な大言語モデル(LLM)から機械生成テキストを特定するという課題を導入する
タスクは3つのサブタスクから構成される: 単言語および多言語におけるバイナリ分類(Subtask A)、多クラス分類(Subtask B)、混合テキスト検出(Subtask C)。
- 参考スコア(独自算出の注目度): 3.6433784431752434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: SemEval-2024 Task 8 introduces the challenge of identifying machine-generated
texts from diverse Large Language Models (LLMs) in various languages and
domains. The task comprises three subtasks: binary classification in
monolingual and multilingual (Subtask A), multi-class classification (Subtask
B), and mixed text detection (Subtask C). This paper focuses on Subtask A & B.
Each subtask is supported by three datasets for training, development, and
testing. To tackle this task, two methods: 1) using traditional machine
learning (ML) with natural language preprocessing (NLP) for feature extraction,
and 2) fine-tuning LLMs for text classification. The results show that
transformer models, particularly LoRA-RoBERTa, exceed traditional ML methods in
effectiveness, with majority voting being particularly effective in
multilingual contexts for identifying machine-generated texts.
- Abstract(参考訳): SemEval-2024 Task 8では、さまざまな言語やドメインのさまざまなLarge Language Models(LLM)から機械生成テキストを特定するという課題が紹介されている。
このタスクは3つのサブタスクから構成される: 単言語および多言語におけるバイナリ分類(Subtask A)、多クラス分類(Subtask B)、混合テキスト検出(Subtask C)。
各サブタスクは、トレーニング、開発、テストのための3つのデータセットによってサポートされます。
この課題に取り組むには2つの方法がある。
1) 特徴抽出のための自然言語前処理(NLP)を用いた従来の機械学習(ML)
2) テキスト分類のための微調整LDM。
その結果、トランスフォーマーモデル、特にLoRA-RoBERTaは従来のML手法よりも有効であり、多数決は機械生成テキストを識別するための多言語文脈において特に有効であることがわかった。
関連論文リスト
- SemEval-2024 Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection [68.858931667807]
Subtask Aは、テキストが人間によって書かれたか、機械によって生成されたかを決定するバイナリ分類タスクである。
サブタスクBは、テキストの正確なソースを検出し、それが人間によって書かれたか、特定のLCMによって生成されたかを認識する。
Subtask Cは、著者が人間から機械へ遷移するテキスト内の変化点を特定することを目的としている。
論文 参考訳(メタデータ) (2024-04-22T13:56:07Z) - Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings [22.71166607645311]
本稿では,最先端のバイリンガルテキスト埋め込みモデルについて紹介する。
これらのモデルは、最大8192トークンで長いテキスト入力を処理することができる。
STSタスクのモデル性能を大幅に改善しました。
我々は、ドイツ語とスペイン語の埋め込みモデルのベンチマークを含むように、Massive Text Embedding Benchmarkを拡張した。
論文 参考訳(メタデータ) (2024-02-26T20:53:12Z) - T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
言語間テキスト分類は通常、様々な言語で事前訓練された大規模多言語言語モデル(LM)に基づいて構築される。
本稿では,古典的な「翻訳とテスト」パイプラインを再考し,翻訳と分類の段階を適切に分離することを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:33:22Z) - SheffieldVeraAI at SemEval-2023 Task 3: Mono and multilingual approaches
for news genre, topic and persuasion technique classification [3.503844033591702]
本稿では,SemEval-2023 Task 3: Finding the category, the framing, and the Persuasion Technique in online news in a multi-lingual setup。
論文 参考訳(メタデータ) (2023-03-16T15:54:23Z) - LVP-M3: Language-aware Visual Prompt for Multilingual Multimodal Machine
Translation [94.33019040320507]
マルチモーダル機械翻訳(MMT)は、視覚的特徴を持つテキストのみの翻訳を強化することに焦点を当てている。
最近の進歩は、各言語ペアごとに別々のモデルをトレーニングすることに苦慮している。
7つの言語をカバーする2つのMultilingual MMTベンチマークデータセットを確立することで,Multilingual MMTタスクを提案する。
論文 参考訳(メタデータ) (2022-10-19T12:21:39Z) - Bridging Cross-Lingual Gaps During Leveraging the Multilingual
Sequence-to-Sequence Pretraining for Text Generation [80.16548523140025]
プレトレインとファインチューンの間のギャップを埋めるために、コードスイッチングの復元タスクを追加して、バニラプレトレイン-ファインチューンパイプラインを拡張します。
提案手法は,言語間文表現距離を狭くし,簡単な計算コストで低周波語翻訳を改善する。
論文 参考訳(メタデータ) (2022-04-16T16:08:38Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
我々は,mBERTを微調整するための多言語コードスイッチングデータを生成するためのデータ拡張フレームワークを提案する。
既存の研究と比較すると,本手法は訓練にバイリンガル文を頼らず,複数の対象言語に対して1つの学習プロセスしか必要としない。
論文 参考訳(メタデータ) (2020-06-11T13:15:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。