論文の概要: Enhancing Reliability of Neural Networks at the Edge: Inverted
Normalization with Stochastic Affine Transformations
- arxiv url: http://arxiv.org/abs/2401.12416v1
- Date: Tue, 23 Jan 2024 00:27:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 17:17:28.430628
- Title: Enhancing Reliability of Neural Networks at the Edge: Inverted
Normalization with Stochastic Affine Transformations
- Title(参考訳): エッジにおけるニューラルネットワークの信頼性向上:確率アフィン変換を用いた逆正規化
- Authors: Soyed Tuhin Ahmed, Kamal Danouchi, Guillaume Prenat, Lorena Anghel,
Mehdi B. Tahoori
- Abstract要約: インメモリコンピューティングアーキテクチャに実装されたBayNNのロバスト性と推論精度を本質的に向上する手法を提案する。
実証的な結果は推論精度の優雅な低下を示し、最大で58.11%の値で改善された。
- 参考スコア(独自算出の注目度): 0.22499166814992438
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Bayesian Neural Networks (BayNNs) naturally provide uncertainty in their
predictions, making them a suitable choice in safety-critical applications.
Additionally, their realization using memristor-based in-memory computing (IMC)
architectures enables them for resource-constrained edge applications. In
addition to predictive uncertainty, however, the ability to be inherently
robust to noise in computation is also essential to ensure functional safety.
In particular, memristor-based IMCs are susceptible to various sources of
non-idealities such as manufacturing and runtime variations, drift, and
failure, which can significantly reduce inference accuracy. In this paper, we
propose a method to inherently enhance the robustness and inference accuracy of
BayNNs deployed in IMC architectures. To achieve this, we introduce a novel
normalization layer combined with stochastic affine transformations. Empirical
results in various benchmark datasets show a graceful degradation in inference
accuracy, with an improvement of up to $58.11\%$.
- Abstract(参考訳): Bayesian Neural Networks (BayNNs) はその予測に不確実性をもたらし、安全クリティカルなアプリケーションに適している。
さらに、memristor-based in-Memory computing (IMC)アーキテクチャを使って実現することで、リソース制約のあるエッジアプリケーションでも実現可能である。
しかしながら、予測の不確実性に加えて、計算におけるノイズに対して本質的に堅牢である能力は、機能的安全性を確保するためにも不可欠である。
特に、memristorベースのIMCは、製造や実行時の変動、ドリフト、失敗など、様々な非イデアルなソースに影響を受けやすいため、推論精度を著しく低下させることができる。
本稿では,IMCアーキテクチャに実装されたBayNNのロバスト性と推論精度を本質的に向上する手法を提案する。
そこで本研究では,確率的アフィン変換を組み合わせた新しい正規化層を提案する。
様々なベンチマークデータセットにおける経験的な結果は、推論精度の優雅な低下を示し、最大で58.11\%$である。
関連論文リスト
- Variational Bayesian Bow tie Neural Networks with Shrinkage [0.276240219662896]
我々は、標準フィードフォワード修正ニューラルネットワークの緩和版を構築した。
我々は、条件付き線形およびガウス的モデルをレンダリングするために、Polya-Gammaデータ拡張トリックを用いる。
層間における分布仮定や独立性を回避する変分推論アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-11-17T17:36:30Z) - Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness [47.9744734181236]
我々は、ディープニューラルネットワーク(DNN)の敵攻撃に対する堅牢性を証明するために、リプシッツ連続性の概念を探求する。
本稿では,入力領域を制約範囲に再マップし,リプシッツ定数を低減し,ロバスト性を高める新しいアルゴリズムを提案する。
本手法は,ロバストベンチリーダーボード上のCIFAR10,CIFAR100,ImageNetデータセットに対して,最も堅牢な精度を実現する。
論文 参考訳(メタデータ) (2024-06-28T03:10:36Z) - Scale-Dropout: Estimating Uncertainty in Deep Neural Networks Using
Stochastic Scale [0.7025445595542577]
ニューラルネットワーク(NN)の不確実性推定は、特に安全クリティカルなアプリケーションにおいて、予測の信頼性と信頼性を向上させる上で不可欠である。
Dropoutを近似とするBayNNは、不確実性に対する体系的なアプローチを提供するが、本質的には、電力、メモリ、定量化の点で高いハードウェアオーバーヘッドに悩まされている。
提案するBayNNに対して,スピントロニクスメモリベースのCIMアーキテクチャを導入し,最先端技術と比較して100倍以上の省エネを実現した。
論文 参考訳(メタデータ) (2023-11-27T13:41:20Z) - Achieving Constraints in Neural Networks: A Stochastic Augmented
Lagrangian Approach [49.1574468325115]
DNN(Deep Neural Networks)の正規化は、一般化性の向上とオーバーフィッティングの防止に不可欠である。
制約付き最適化問題としてトレーニングプロセスのフレーミングによるDNN正規化に対する新しいアプローチを提案する。
我々はAugmented Lagrangian (SAL) 法を用いて、より柔軟で効率的な正規化機構を実現する。
論文 参考訳(メタデータ) (2023-10-25T13:55:35Z) - Negative Feedback Training: A Novel Concept to Improve Robustness of NVCIM DNN Accelerators [11.832487701641723]
非揮発性メモリ(NVM)デバイスは、Deep Neural Network(DNN)推論の実行時のエネルギー効率とレイテンシが優れている。
ネットワークから取得したマルチスケールノイズ情報を活用した負フィードバックトレーニング(NFT)を提案する。
提案手法は,既存の最先端手法よりも46.71%の精度向上を実現している。
論文 参考訳(メタデータ) (2023-05-23T22:56:26Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Scalable Uncertainty for Computer Vision with Functional Variational
Inference [18.492485304537134]
関数空間における変分推論の定式化を利用する。
選択したCNNアーキテクチャを1つのフォワードパスのコストで予測不確実性を推定する。
本研究では,高次元タスクの文脈で高速な学習を可能にする数値的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-06T19:09:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。