An Automated Real-Time Approach for Image Processing and Segmentation of Fluoroscopic Images and Videos Using a Single Deep Learning Network
- URL: http://arxiv.org/abs/2401.12488v2
- Date: Sat, 25 May 2024 01:38:28 GMT
- Title: An Automated Real-Time Approach for Image Processing and Segmentation of Fluoroscopic Images and Videos Using a Single Deep Learning Network
- Authors: Viet Dung Nguyen, Michael T. LaCour, Richard D. Komistek,
- Abstract summary: The potential of using machine learning for image segmentation in total knee lies in its ability to improve segmentation accuracy, automate the process, and provide real-time assistance to surgeons.
This paper proposes a methodology to use deep learning for robust real-time total knee image segmentation.
The deep learning model, trained on a large dataset, demonstrates outstanding performance in accurately segmenting both the implanted femur and tibia.
- Score: 2.752817022620644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image segmentation in total knee arthroplasty is crucial for precise preoperative planning and accurate implant positioning, leading to improved surgical outcomes and patient satisfaction. The biggest challenges of image segmentation in total knee arthroplasty include accurately delineating complex anatomical structures, dealing with image artifacts and noise, and developing robust algorithms that can handle anatomical variations and pathologies commonly encountered in patients. The potential of using machine learning for image segmentation in total knee arthroplasty lies in its ability to improve segmentation accuracy, automate the process, and provide real-time assistance to surgeons, leading to enhanced surgical planning, implant placement, and patient outcomes. This paper proposes a methodology to use deep learning for robust and real-time total knee arthroplasty image segmentation. The deep learning model, trained on a large dataset, demonstrates outstanding performance in accurately segmenting both the implanted femur and tibia, achieving an impressive mean-Average-Precision (mAP) of 88.83 when compared to the ground truth while also achieving a real-time segmented speed of 20 frames per second (fps). We have introduced a novel methodology for segmenting implanted knee fluoroscopic or x-ray images that showcases remarkable levels of accuracy and speed, paving the way for various potential extended applications.
Related papers
- Enhanced Knee Kinematics: Leveraging Deep Learning and Morphing Algorithms for 3D Implant Modeling [2.752817022620644]
This study proposes a novel approach using machine learning algorithms and morphing techniques for precise 3D reconstruction of implanted knee models.
A convolutional neural network is trained to automatically segment the femur contour of the implanted components.
A morphing algorithm generates a personalized 3D model of the implanted knee joint.
arXiv Detail & Related papers (2024-08-02T20:11:04Z) - Fully automated workflow for the design of patient-specific orthopaedic implants: application to total knee arthroplasty [0.0]
The proposed workflow allows for a fast and reliable personalisation of knee implants, directly from the patient CT image.
It establishes a patient-specific pre-operative planning for TKA in a very short time making it easily available for all patients.
This solution could help answer the growing number of arthroplasties while reducing complications and improving the patients' satisfaction.
arXiv Detail & Related papers (2024-03-22T17:08:03Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Monocular Microscope to CT Registration using Pose Estimation of the
Incus for Augmented Reality Cochlear Implant Surgery [3.8909273404657556]
We develop a method that permits direct 2D-to-3D registration of the view microscope video to the pre-operative Computed Tomography (CT) scan without the need for external tracking equipment.
Our results demonstrate the accuracy with an average rotation error of less than 25 degrees and a translation error of less than 2 mm, 3 mm, and 0.55% for the x, y, and z axes, respectively.
arXiv Detail & Related papers (2024-03-12T00:26:08Z) - Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries [29.201385352740555]
We propose a novel visual-kinematics graph learning framework to accurately segment the instrument tip given various surgical procedures.
Specifically, a graph learning framework is proposed to encode relational features of instrument parts from both image and kinematics.
A cross-modal contrastive loss is designed to incorporate robust geometric prior from kinematics to image for tip segmentation.
arXiv Detail & Related papers (2023-09-02T14:52:58Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
We propose a vision transformer-based approach to learn temporal features directly from sequence-level patches.
We extensively evaluate our approach on two cataract surgery video datasets, Cataract-101 and D99, and demonstrate superior performance compared to various state-of-the-art methods.
arXiv Detail & Related papers (2023-07-20T17:57:04Z) - Neural LerPlane Representations for Fast 4D Reconstruction of Deformable
Tissues [52.886545681833596]
LerPlane is a novel method for fast and accurate reconstruction of surgical scenes under a single-viewpoint setting.
LerPlane treats surgical procedures as 4D volumes and factorizes them into explicit 2D planes of static and dynamic fields.
LerPlane shares static fields, significantly reducing the workload of dynamic tissue modeling.
arXiv Detail & Related papers (2023-05-31T14:38:35Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
This study develops an algorithm for calculating bone growth in contact with metallic implants.
Bone and implant tissue were manually segmented in the training data set.
In terms of network accuracy, the model reached around 98%.
arXiv Detail & Related papers (2022-04-22T08:17:20Z) - NanoNet: Real-Time Polyp Segmentation in Video Capsule Endoscopy and
Colonoscopy [0.6125117548653111]
We propose NanoNet, a novel architecture for the segmentation of video capsule endoscopy and colonoscopy images.
Our proposed architecture allows real-time performance and has higher segmentation accuracy compared to other more complex ones.
arXiv Detail & Related papers (2021-04-22T15:40:28Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
Most applications rely on accurate real-time segmentation of high-resolution surgical images.
We design a light-weight and highly-efficient deep residual architecture which is tuned to perform real-time inference of high-resolution images.
arXiv Detail & Related papers (2020-07-08T21:38:29Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.