Extended imaginary gauge transformation in a general nonreciprocal lattice
- URL: http://arxiv.org/abs/2401.12785v2
- Date: Tue, 3 Sep 2024 16:57:43 GMT
- Title: Extended imaginary gauge transformation in a general nonreciprocal lattice
- Authors: Yunyao Qi, Jinghui Pi, Yuquan Wu, Heng Lin, Chao Zheng, Gui-Lu Long,
- Abstract summary: We unveil the validity of Imaginary gauge transformation (IGT) hinges on a class of pseudo-Hermitian symmetry.
We investigate the applicability of IGT and the underlying pseudo-Hermiticity beyond nearest-neighbor hopping.
Our theoretical framework is applied to establish bulk-boundary correspondence in the nonreciprocal trimer Su-Schrieffer-Heeger model.
- Score: 4.052015796522459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imaginary gauge transformation (IGT) provides a clear understanding of the non-Hermitian skin effect by transforming the non-Hermitian Hamiltonians with real spectra into Hermitian ones. In this paper, we extend this approach to the complex spectrum regime in a general nonreciprocal lattice model. We unveil the validity of IGT hinges on a class of pseudo-Hermitian symmetry. The generalized Brillouin zone of Hamiltonians respect such pseudo-Hermiticity is demonstrated to be a circle, which enables easy access to the continuum bands, localization length of skin modes, and relevant topological numbers. Furthermore, we investigate the applicability of IGT and the underlying pseudo-Hermiticity beyond nearest-neighbor hopping, offering a graphical interpretation. Our theoretical framework is applied to establish bulk-boundary correspondence in the nonreciprocal trimer Su-Schrieffer-Heeger model and to analyze the localization behaviors of skin modes in the two-dimensional Hatano-Nelson model.
Related papers
- Critical spin models from holographic disorder [49.1574468325115]
We study the behavior of XXZ spin chains with a quasiperiodic disorder not present in continuum holography.
Our results suggest the existence of a class of critical phases whose symmetries are derived from models of discrete holography.
arXiv Detail & Related papers (2024-09-25T18:00:02Z) - Latent Su-Schrieffer-Heeger models [0.0]
Su-Schrieffer-Heeger (SSH) chain is the reference model of a one-dimensional topological insulator.
Here, we harness recent graph-theoretical results to construct families of setups whose unit cell features neither of these symmetries.
This causes the isospectral reduction -- akin to an effective Hamiltonian -- of the resulting lattice to have the form of an SSH model.
arXiv Detail & Related papers (2023-10-11T16:00:21Z) - A path integral formula of quantum gravity emergent from entangled local structures [0.0]
We show that a theory of emergent gravity arises, and that this can be recast according to the Ashtekar's formulation of general relativity.
As a consequence of the quantization procedure, the Hamiltonian is recovered to be non-Hermitian, and can be related to the complex action formalism.
arXiv Detail & Related papers (2023-04-21T10:23:35Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Illuminating the bulk-boundary correspondence of a non-Hermitian stub
lattice with Majorana stars [0.0]
We analyze the topological phases of a nonreciprocal hopping model on the stub lattice.
The parity of the total azimuthal winding of the entire Majorana constellation correctly predicts the appearance of edge states between the bulk gaps.
arXiv Detail & Related papers (2021-08-27T16:09:27Z) - Conformal field theory from lattice fermions [77.34726150561087]
We provide a rigorous lattice approximation of conformal field theories given in terms of lattice fermions in 1+1-dimensions.
We show how these results lead to explicit error estimates pertaining to the quantum simulation of conformal field theories.
arXiv Detail & Related papers (2021-07-29T08:54:07Z) - The topological counterparts of non-Hermitian SSH models [0.0]
We propose a method to construct the topological equivalent models of the non-Hermitian dimerized lattices with the similarity transformations.
As an illustration, we apply this approach to several representative non-Hermitian SSH models.
arXiv Detail & Related papers (2021-03-23T08:58:43Z) - The quantum phase transitions of dimer chain driven by an imaginary ac
field [0.0]
A topologically equivalent tight binding model is proposed to study the quantum phase transitions of dimer chain driven by an imaginary ac field.
The approach has the potential applications to investigate the topological states of matter driven by the complex external parameters.
arXiv Detail & Related papers (2020-09-08T09:07:45Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.