論文の概要: An embedding-based distance for temporal graphs
- arxiv url: http://arxiv.org/abs/2401.12843v2
- Date: Tue, 3 Sep 2024 12:49:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 21:31:42.131516
- Title: An embedding-based distance for temporal graphs
- Title(参考訳): 時間グラフの埋め込みに基づく距離
- Authors: Lorenzo Dall'Amico, Alain Barrat, Ciro Cattuto,
- Abstract要約: 時間参照ランダムウォークに基づく埋め込みを用いて、時間グラフ間の距離の新しい概念を導入する。
この距離は、異なるノード数と異なる時間間隔を持つ時間グラフのペアに対してよく定義されている。
我々は、位相的および時間的特性の異なる微分グラフを導入する距離を示す。
- 参考スコア(独自算出の注目度): 3.703194328049199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal graphs are commonly used to represent time-resolved relations between entities in many natural and artificial systems. Many techniques were devised to investigate the evolution of temporal graphs by comparing their state at different time points. However, quantifying the similarity between temporal graphs as a whole is an open problem. Here, we use embeddings based on time-respecting random walks to introduce a new notion of distance between temporal graphs. This distance is well-defined for pairs of temporal graphs with different numbers of nodes and different time spans. We study the case of a matched pair of graphs, when a known relation exists between their nodes, and the case of unmatched graphs, when such a relation is unavailable and the graphs may be of different sizes. We use empirical and synthetic temporal network data to show that the distance we introduce discriminates graphs with different topological and temporal properties. We provide an efficient implementation of the distance computation suitable for large-scale temporal graphs.
- Abstract(参考訳): 時間グラフは、多くの自然系と人工系の実体間の時間分解関係を表すために一般的に用いられる。
異なる時点における状態を比較することによって、時間グラフの進化を研究するために、多くの技術が考案された。
しかし、時間グラフ全体の類似性を定量化することは、オープンな問題である。
ここでは、時間参照ランダムウォークに基づく埋め込みを用いて、時間グラフ間の距離の新しい概念を導入する。
この距離は、異なるノード数と異なる時間間隔を持つ時間グラフのペアに対してよく定義されている。
一致したグラフのペアの場合,ノード間の既知の関係が存在する場合,マッチングされていないグラフの場合,そのような関係が利用できない場合,グラフのサイズが異なる場合などについて検討する。
実験的, 合成的時間ネットワークデータを用いて, 位相的, 時間的特性の異なるグラフを識別することを示す。
大規模時間グラフに適した距離計算の効率的な実装を提案する。
関連論文リスト
- Adjustment Identification Distance: A gadjid for Causal Structure Learning [2.72836834536003]
グラフ間の因果距離を開発するための枠組みを開発する。
このフレームワークを用いて、改良された調整ベース距離と、部分的に有向な非巡回グラフと因果順序の拡張を開発する。
論文 参考訳(メタデータ) (2024-02-13T17:32:59Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Exploiting Edge Features in Graphs with Fused Network Gromov-Wasserstein
Distance [18.522233517515975]
ノードとエッジが特徴を持つグラフを比較するために,Gromov-Wasserstein距離の拡張を導入する。
入力空間または出力空間でグラフが発生する学習タスクにおいて、新しい距離の有効性を実証的に示す。
論文 参考訳(メタデータ) (2023-09-28T17:05:03Z) - Learning Graph Search Heuristics [48.83557172525969]
本稿では,新しいニューラルネットワークと学習アルゴリズムであるPHIL(Path Heuristic with Imitation Learning)について述べる。
我々の関数は、ノード距離の推測に有用なグラフ埋め込みを学習し、グラフサイズに依存しない一定時間で実行し、テスト時にA*のようなアルゴリズムに容易に組み込むことができる。
実験の結果、PHILはベンチマークデータセットの最先端の手法と比較して平均58.5%の探索ノード数を削減している。
論文 参考訳(メタデータ) (2022-12-07T22:28:00Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
時間的ネットワーク上での機械学習の方法は、一般的に2つの制限のうちの少なくとも1つを示す。
ネットワークのライングラフは,各インタラクションのノードを含むもので,インタラクション間の時間差に基づいて,このグラフのエッジを重み付けする。
実世界のネットワークにおける実験結果から,エッジ分類と時間リンク予測の両方において,本手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2022-09-30T18:24:13Z) - On a linear fused Gromov-Wasserstein distance for graph structured data [2.360534864805446]
埋め込み間のユークリッド距離として定義される2つのグラフ間の新しい距離である線形FGWを提案する。
提案した距離の利点は2つある: 1) ノードの特徴とグラフの構造を考慮して、カーネルベースのフレームワークにおけるグラフ間の類似性を測定する。
論文 参考訳(メタデータ) (2022-03-09T13:43:18Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
本稿では,グラフ構造形成の暗黙的モデルを学ぶエンドツーエンドフレームワークを提案し,その基盤となる最適化機構を明らかにする。
学習した目的は、観測されたグラフプロパティの説明として機能し、ドメイン内の異なるグラフを渡すために自分自身を貸すことができる。
GraphOptは、グラフ内のリンク生成をシーケンシャルな意思決定プロセスとして、最大エントロピー逆強化学習アルゴリズムを用いて解決する。
論文 参考訳(メタデータ) (2020-07-07T16:51:39Z) - Time-varying Graph Representation Learning via Higher-Order Skip-Gram
with Negative Sampling [0.456877715768796]
我々は,スキップグラム埋め込み手法が行列分解を暗黙的に行うという事実に基づいて構築する。
負のサンプリングを持つ高次スキップグラムは、ノードと時間の役割を乱すことができることを示す。
提案手法を時間分解型対面近接データを用いて実証的に評価し,学習した時間変化グラフ表現が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-06-25T12:04:48Z) - Wasserstein Embedding for Graph Learning [33.90471037116372]
Wasserstein Embedding for Graph Learning (WEGL)は、グラフ全体をベクトル空間に埋め込むフレームワークである。
グラフ間の類似性をノード埋め込み分布間の類似性の関数として定義する上で,新たな知見を活用する。
各種ベンチマークグラフ固有性予測タスクにおける新しいグラフ埋め込み手法の評価を行った。
論文 参考訳(メタデータ) (2020-06-16T18:23:00Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。