論文の概要: Unlocking the Potential: Multi-task Deep Learning for Spaceborne Quantitative Monitoring of Fugitive Methane Plumes
- arxiv url: http://arxiv.org/abs/2401.12870v3
- Date: Wed, 02 Oct 2024 14:32:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-03 15:17:12.063004
- Title: Unlocking the Potential: Multi-task Deep Learning for Spaceborne Quantitative Monitoring of Fugitive Methane Plumes
- Title(参考訳): ポテンシャルの解き放つ:多タスク深層学習による宇宙空間でのメタン塔の定量的モニタリング
- Authors: Guoxin Si, Shiliang Fu, Wei Yao,
- Abstract要約: メタン濃度インバージョン(英語版)、プルームセグメンテーション(英語版)、エミッションレート推定(英語版)は、メタン排出モニタリングの3つのサブタスクである。
リモートセンシング画像からメタン排出量の定量モニタリングを行うための,新しいディープラーニングベースのフレームワークを提案する。
メタン濃度インバージョンのためのU-Netネットワーク,メタン配管セグメンテーションのためのMask R-CNNネットワーク,メタン排出率推定のためのResNet-50ネットワークを訓練する。
- 参考スコア(独自算出の注目度): 0.7970333810038046
- License:
- Abstract: As global warming intensifies, increased attention is being paid to monitoring fugitive methane emissions and detecting gas plumes from landfills. We have divided methane emission monitoring into three subtasks: methane concentration inversion, plume segmentation, and emission rate estimation. Traditional algorithms face certain limitations: methane concentration inversion typically employs the matched filter, which is sensitive to the global spectrum distribution and prone to significant noise. There is scant research on plume segmentation, with many studies depending on manual segmentation, which can be subjective. The estimation of methane emission rate frequently uses the IME algorithm, which necessitates meteorological measurement data. Utilizing the WENT landfill site in Hong Kong along with PRISMA hyperspectral satellite imagery, we introduce a novel deep learning-based framework for quantitative methane emission monitoring from remote sensing images that is grounded in physical simulation. We create simulated methane plumes using large eddy simulation (LES) and various concentration maps of fugitive emissions using the radiative transfer equation (RTE), while applying augmentation techniques to construct a simulated PRISMA dataset. We train a U-Net network for methane concentration inversion, a Mask R-CNN network for methane plume segmentation, and a ResNet-50 network for methane emission rate estimation. All three deep networks yield higher validation accuracy compared to traditional algorithms. Furthermore, we combine the first two subtasks and the last two subtasks to design multi-task learning models, MTL-01 and MTL-02, both of which outperform single-task models in terms of accuracy. Our research exemplifies the application of multi-task deep learning to quantitative methane monitoring and can be generalized to a wide array of methane monitoring tasks.
- Abstract(参考訳): 地球温暖化が増すにつれ、ごみ埋立地からのメタン排出の監視やガス配管の検知に注意が向けられている。
我々は,メタン濃度インバージョン,プルームセグメンテーション,エミッションレート推定の3つのサブタスクにメタン排出量モニタリングを分割した。
メタン濃度インバージョンは通常、大域スペクトル分布に敏感な整合フィルタを使用し、大きなノイズを生じさせる。
プルームセグメンテーションは、手動セグメンテーションに依存する多くの研究が主観的な研究である。
メタン排出率の推定には、気象観測データを必要とするIMEアルゴリズムが頻繁に用いられる。
香港のWENT埋立処分場とPRISMAハイパースペクトル衛星画像を用いて,物理シミュレーションに基礎を置いているリモートセンシング画像からメタン排出量の定量モニタリングを行うための,新しいディープラーニングベースのフレームワークを提案する。
我々は,大渦シミュレーション (LES) と放射移動方程式 (RTE) を用いた各種拡散放出の濃度マップを用いてメタンプラムを模擬し,擬似PRISMAデータセットの構築に拡張技術を適用した。
メタン濃度インバージョンのためのU-Netネットワーク,メタン配管セグメンテーションのためのMask R-CNNネットワーク,メタン排出率推定のためのResNet-50ネットワークを訓練する。
3つのディープネットワークは、従来のアルゴリズムよりも高い検証精度が得られる。
さらに,最初の2つのサブタスクと最後の2つのサブタスクを組み合わせて,マルチタスク学習モデルであるMTL-01とMTL-02を設計する。
本研究は,メタンの定量モニタリングにおけるマルチタスク深層学習の適用を実証し,幅広いメタンモニタリングタスクに一般化できることを示す。
関連論文リスト
- Forecasting Smog Clouds With Deep Learning [6.144680854063938]
大気汚染のダイナミクスと大気科学にインスパイアされた階層型モデルアーキテクチャを提案する。
以上の結果から, 階層型GRUはスモッグ関連汚染物質の濃度を予測するための競争的かつ効率的な方法であることが示された。
論文 参考訳(メタデータ) (2024-10-03T17:59:13Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
メタン (CH_4) は強力な温室効果ガスであり、20年間で二酸化炭素 (CO_2) の86倍の温暖化に寄与する。
この研究は、ショートウェーブ赤外線(SWIR)帯域におけるメタン点源検出センサの既存の情報を拡張する。
従来の機械学習(ML)アプローチと同様に、最先端の技術をレビューする。
論文 参考訳(メタデータ) (2024-08-27T15:03:20Z) - Modeling State Shifting via Local-Global Distillation for Event-Frame Gaze Tracking [61.44701715285463]
本稿では,イベントデータとフレームデータの両方を用いた受動的視線推定の問題に取り組む。
我々は、現在の状態からいくつかの事前登録されたアンカー状態に移行する状態の定量化として、視線推定を再構成する。
大規模視線推定ネットワークを直接学習する代わりに,地域の専門家グループと学生ネットワークを連携させることにより,一般化能力の向上を図る。
論文 参考訳(メタデータ) (2024-03-31T03:30:37Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
メタンは最も強力な温室効果ガスの1つである。
現在のメタン放出モニタリング技術は、近似的な放出要因や自己報告に依存している。
深層学習法は、Sentinel-2衛星マルチスペクトルデータにおけるメタン漏れの自動検出に利用することができる。
論文 参考訳(メタデータ) (2023-08-21T19:36:50Z) - MethaneMapper: Spectral Absorption aware Hyperspectral Transformer for
Methane Detection [13.247385727508155]
メタンは地球規模の気候変動に大きく貢献している。
本稿では, 放射を検出・定量化するために, 端から端までのスペクトル吸収波長を考慮したトランスネットワークMethaneMapperを提案する。
MethaneMapperは検出時に0.63mAPを達成し、現在の技術と比べてモデルサイズ(5倍)を縮小する。
論文 参考訳(メタデータ) (2023-04-05T22:15:18Z) - Detecting Methane Plumes using PRISMA: Deep Learning Model and Data
Augmentation [67.32835203947133]
PRISMAのような新世代の超スペクトル画像装置は、高空間分解能(30m)で宇宙からメタン(CH4)プラムの検出能力を著しく改善した。
ここでは、PRISMA衛星ミッションの画像を用いてCH4プラムを識別するための完全なフレームワークと、広範囲のプラムを検出可能なディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2022-11-17T17:36:05Z) - METER-ML: A Multi-sensor Earth Observation Benchmark for Automated
Methane Source Mapping [2.814379852040968]
深層学習はメタン源の位置と特性を特定することができる。
機械学習の研究者や実践者が自動マッピングのアプローチを構築できるような、公開データの欠如がある。
我々は、米国内で86,625のジオレファレンスNAIP、Sentinel-1、Sentinel-2画像を含むMETER-MLと呼ばれるマルチセンサーデータセットを構築した。
本モデルでは, 油田精油所および石油ターミナルにおける集中給餌作業の精度を0.915の精度で再現し, 油田精油所および石油ターミナルの0.821の精度で評価した。
論文 参考訳(メタデータ) (2022-07-22T16:12:07Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z) - Spatial and spectral deep attention fusion for multi-channel speech
separation using deep embedding features [60.20150317299749]
マルチチャネルディープクラスタリング(MDC)は、音声分離に優れた性能を得た。
本研究では,スペクトルおよび空間的特徴の重みを動的に制御し,それらを深く結合するディープ・アテンション・フュージョン法を提案する。
実験結果から,提案手法はMDCベースラインよりも優れ,理想的なバイナリマスク(IBM)よりも優れていた。
論文 参考訳(メタデータ) (2020-02-05T03:49:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。