Common-Sense Bias Modeling for Classification Tasks
- URL: http://arxiv.org/abs/2401.13213v5
- Date: Mon, 20 Jan 2025 22:21:13 GMT
- Title: Common-Sense Bias Modeling for Classification Tasks
- Authors: Miao Zhang, Zee fryer, Ben Colman, Ali Shahriyari, Gaurav Bharaj,
- Abstract summary: We propose a novel framework to extract comprehensive biases in image datasets based on textual descriptions.
Our method uncovers novel model biases in multiple image benchmark datasets.
The discovered bias can be mitigated by simple data re-weighting to de-correlate the features.
- Score: 15.683471433842492
- License:
- Abstract: Machine learning model bias can arise from dataset composition: correlated sensitive features can distort the downstream classification model's decision boundary and lead to performance differences along these features. Existing de-biasing works tackle the most prominent bias features, such as colors of digits or background of animals. However, real-world datasets often include a large number of feature correlations that intrinsically manifest in the data as common sense information. Such spurious visual cues can further reduce model robustness. Thus, domain practitioners desire a comprehensive understanding of correlations and the flexibility to address relevant biases. To this end, we propose a novel framework to extract comprehensive biases in image datasets based on textual descriptions, a common sense-rich modality. Specifically, features are constructed by clustering noun phrase embeddings with similar semantics. The presence of each feature across the dataset is inferred, and their co-occurrence statistics are measured, with spurious correlations optionally examined by a human-in-the-loop module. Downstream experiments show that our method uncovers novel model biases in multiple image benchmark datasets. Furthermore, the discovered bias can be mitigated by simple data re-weighting to de-correlate the features, outperforming state-of-the-art unsupervised bias mitigation methods.
Related papers
- Enhancing Intrinsic Features for Debiasing via Investigating Class-Discerning Common Attributes in Bias-Contrastive Pair [36.221761997349795]
Deep neural networks rely on bias attributes that are spuriously correlated with a target class in the presence of dataset bias.
This paper proposes a method that provides the model with explicit spatial guidance that indicates the region of intrinsic features.
Experiments demonstrate that our method achieves state-of-the-art performance on synthetic and real-world datasets with various levels of bias severity.
arXiv Detail & Related papers (2024-04-30T04:13:14Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Does Your Model Classify Entities Reasonably? Diagnosing and Mitigating
Spurious Correlations in Entity Typing [29.820473012776283]
Existing entity typing models are subject to the problem of spurious correlations.
We identify six types of existing model biases, including mention-context bias, lexical overlapping bias, named entity bias, pronoun bias, dependency bias, and overgeneralization bias.
By augmenting the original training set with their bias-free counterparts, models are forced to fully comprehend the sentences.
arXiv Detail & Related papers (2022-05-25T10:34:22Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Learning Debiased Representation via Disentangled Feature Augmentation [19.348340314001756]
This paper presents an empirical analysis revealing that training with "diverse" bias-conflicting samples is crucial for debiasing.
We propose a novel feature-level data augmentation technique in order to synthesize diverse bias-conflicting samples.
arXiv Detail & Related papers (2021-07-03T08:03:25Z) - Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles [66.15398165275926]
We propose a method that can automatically detect and ignore dataset-specific patterns, which we call dataset biases.
Our method trains a lower capacity model in an ensemble with a higher capacity model.
We show improvement in all settings, including a 10 point gain on the visual question answering dataset.
arXiv Detail & Related papers (2020-11-07T22:20:03Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.