Debiasing Counterfactuals In the Presence of Spurious Correlations
- URL: http://arxiv.org/abs/2308.10984v1
- Date: Mon, 21 Aug 2023 19:01:45 GMT
- Title: Debiasing Counterfactuals In the Presence of Spurious Correlations
- Authors: Amar Kumar, Nima Fathi, Raghav Mehta, Brennan Nichyporuk, Jean-Pierre
R. Falet, Sotirios Tsaftaris, Tal Arbel
- Abstract summary: We introduce the first end-to-end training framework that integrates both (i) popular debiasing classifiers and (ii) counterfactual image generation.
We demonstrate that the debiasing method: learns generalizable markers across the population, and (ii) successfully ignores spurious correlations and focuses on the underlying disease pathology.
- Score: 0.98342301244574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models can perform well in complex medical imaging
classification tasks, even when basing their conclusions on spurious
correlations (i.e. confounders), should they be prevalent in the training
dataset, rather than on the causal image markers of interest. This would
thereby limit their ability to generalize across the population. Explainability
based on counterfactual image generation can be used to expose the confounders
but does not provide a strategy to mitigate the bias. In this work, we
introduce the first end-to-end training framework that integrates both (i)
popular debiasing classifiers (e.g. distributionally robust optimization (DRO))
to avoid latching onto the spurious correlations and (ii) counterfactual image
generation to unveil generalizable imaging markers of relevance to the task.
Additionally, we propose a novel metric, Spurious Correlation Latching Score
(SCLS), to quantify the extent of the classifier reliance on the spurious
correlation as exposed by the counterfactual images. Through comprehensive
experiments on two public datasets (with the simulated and real visual
artifacts), we demonstrate that the debiasing method: (i) learns generalizable
markers across the population, and (ii) successfully ignores spurious
correlations and focuses on the underlying disease pathology.
Related papers
- Towards Deconfounded Image-Text Matching with Causal Inference [36.739004282369656]
We propose an innovative Deconfounded Causal Inference Network (DCIN) for image-text matching task.
DCIN decomposes the intra- and inter-modal confounders and incorporates them into the encoding stage of visual and textual features.
It can learn causality instead of spurious correlations caused by dataset bias.
arXiv Detail & Related papers (2024-08-22T11:04:28Z) - Spuriousness-Aware Meta-Learning for Learning Robust Classifiers [26.544938760265136]
Spurious correlations are brittle associations between certain attributes of inputs and target variables.
Deep image classifiers often leverage them for predictions, leading to poor generalization on the data where the correlations do not hold.
Mitigating the impact of spurious correlations is crucial towards robust model generalization, but it often requires annotations of the spurious correlations in data.
arXiv Detail & Related papers (2024-06-15T21:41:25Z) - Decompose-and-Compose: A Compositional Approach to Mitigating Spurious Correlation [2.273629240935727]
We propose Decompose-and-Compose (DaC) to improve correlation shift by combining elements of images.
Based on our observations, models trained with Empirical Risk Minimization (ERM) usually highly attend to either the causal components or the components having a high spurious correlation with the label.
We propose a group-balancing method by intervening on images without requiring group labels or information regarding the spurious features during training.
arXiv Detail & Related papers (2024-02-29T07:24:24Z) - Common-Sense Bias Discovery and Mitigation for Classification Tasks [16.8259488742528]
We propose a framework to extract feature clusters in a dataset based on image descriptions.
The analyzed features and correlations are human-interpretable, so we name the method Common-Sense Bias Discovery (CSBD)
Experiments show that our method discovers novel biases on multiple classification tasks for two benchmark image datasets.
arXiv Detail & Related papers (2024-01-24T03:56:07Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
Spurious correlations can cause strong biases in deep neural networks, impairing generalization ability.
We propose a self-supervised debiasing framework potentially compatible with unlabeled samples.
Remarkably, the proposed debiasing framework significantly improves the generalization performance of self-supervised learning baselines.
arXiv Detail & Related papers (2022-10-11T08:26:19Z) - Causal Transportability for Visual Recognition [70.13627281087325]
We show that standard classifiers fail because the association between images and labels is not transportable across settings.
We then show that the causal effect, which severs all sources of confounding, remains invariant across domains.
This motivates us to develop an algorithm to estimate the causal effect for image classification.
arXiv Detail & Related papers (2022-04-26T15:02:11Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Evaluation of Complexity Measures for Deep Learning Generalization in
Medical Image Analysis [77.34726150561087]
PAC-Bayes flatness-based and path norm-based measures produce the most consistent explanation for the combination of models and data.
We also investigate the use of multi-task classification and segmentation approach for breast images.
arXiv Detail & Related papers (2021-03-04T20:58:22Z) - Evaluating and Mitigating Bias in Image Classifiers: A Causal
Perspective Using Counterfactuals [27.539001365348906]
We present a method for generating counterfactuals by incorporating a structural causal model (SCM) in an improved variant of Adversarially Learned Inference (ALI)
We show how to explain a pre-trained machine learning classifier, evaluate its bias, and mitigate the bias using a counterfactual regularizer.
arXiv Detail & Related papers (2020-09-17T13:19:31Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.