AMANet: Advancing SAR Ship Detection with Adaptive Multi-Hierarchical
Attention Network
- URL: http://arxiv.org/abs/2401.13214v1
- Date: Wed, 24 Jan 2024 03:56:33 GMT
- Title: AMANet: Advancing SAR Ship Detection with Adaptive Multi-Hierarchical
Attention Network
- Authors: Xiaolin Ma, Junkai Cheng, Aihua Li, Yuhua Zhang, Zhilong Lin
- Abstract summary: A novel adaptive multi-hierarchical attention module (AMAM) is proposed to learn multi-scale features and adaptively aggregate salient features from various feature layers.
We first fuse information from adjacent feature layers to enhance the detection of smaller targets, thereby achieving multi-scale feature enhancement.
Thirdly, we present a novel adaptive multi-hierarchical attention network (AMANet) by embedding the AMAM between the backbone network and the feature pyramid network.
- Score: 0.5437298646956507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, methods based on deep learning have been successfully applied to
ship detection for synthetic aperture radar (SAR) images. Despite the
development of numerous ship detection methodologies, detecting small and
coastal ships remains a significant challenge due to the limited features and
clutter in coastal environments. For that, a novel adaptive multi-hierarchical
attention module (AMAM) is proposed to learn multi-scale features and
adaptively aggregate salient features from various feature layers, even in
complex environments. Specifically, we first fuse information from adjacent
feature layers to enhance the detection of smaller targets, thereby achieving
multi-scale feature enhancement. Then, to filter out the adverse effects of
complex backgrounds, we dissect the previously fused multi-level features on
the channel, individually excavate the salient regions, and adaptively
amalgamate features originating from different channels. Thirdly, we present a
novel adaptive multi-hierarchical attention network (AMANet) by embedding the
AMAM between the backbone network and the feature pyramid network (FPN).
Besides, the AMAM can be readily inserted between different frameworks to
improve object detection. Lastly, extensive experiments on two large-scale SAR
ship detection datasets demonstrate that our AMANet method is superior to
state-of-the-art methods.
Related papers
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
We design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction.
Renormalized connection (RC) on the KDN enables synergistic focusing'' of multi-scale features.
RCs extend the multi-level feature's divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks.
arXiv Detail & Related papers (2024-09-09T13:56:22Z) - Multi-Scale Direction-Aware Network for Infrared Small Target Detection [2.661766509317245]
Infrared small target detection faces the problem that it is difficult to effectively separate the background and the target.
We propose a multi-scale direction-aware network (MSDA-Net) to integrate the high-frequency directional features of infrared small targets.
MSDA-Net achieves state-of-the-art (SOTA) results on the public NUDT-SIRST, SIRST and IRSTD-1k datasets.
arXiv Detail & Related papers (2024-06-04T07:23:09Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images [1.662438436885552]
Multi-modal fusion has been determined to enhance the accuracy by fusing data from multiple modalities.
We propose a novel multi-modal fusion strategy for mapping relationships between different channels at the early stage.
By addressing fusion in the early stage, as opposed to mid or late-stage methods, our method achieves competitive and even superior performance compared to existing techniques.
arXiv Detail & Related papers (2023-10-21T00:56:11Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Dsfer-Net: A Deep Supervision and Feature Retrieval Network for Bitemporal Change Detection Using Modern Hopfield Networks [35.415260892693745]
We propose a Deep Supervision and FEature Retrieval network (Dsfer-Net) for bitemporal change detection.
Specifically, the highly representative deep features of bitemporal images are jointly extracted through a fully convolutional Siamese network.
Our end-to-end network establishes a novel framework by aggregating retrieved features and feature pairs from different layers.
arXiv Detail & Related papers (2023-04-03T16:01:03Z) - HiDAnet: RGB-D Salient Object Detection via Hierarchical Depth Awareness [2.341385717236931]
We propose a novel Hierarchical Depth Awareness network (HiDAnet) for RGB-D saliency detection.
Our motivation comes from the observation that the multi-granularity properties of geometric priors correlate well with the neural network hierarchies.
Our HiDAnet performs favorably over the state-of-the-art methods by large margins.
arXiv Detail & Related papers (2023-01-18T10:00:59Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - MRDet: A Multi-Head Network for Accurate Oriented Object Detection in
Aerial Images [51.227489316673484]
We propose an arbitrary-oriented region proposal network (AO-RPN) to generate oriented proposals transformed from horizontal anchors.
To obtain accurate bounding boxes, we decouple the detection task into multiple subtasks and propose a multi-head network.
Each head is specially designed to learn the features optimal for the corresponding task, which allows our network to detect objects accurately.
arXiv Detail & Related papers (2020-12-24T06:36:48Z) - Dense Multiscale Feature Fusion Pyramid Networks for Object Detection in
UAV-Captured Images [0.09065034043031667]
We propose a novel method called Dense Multiscale Feature Fusion Pyramid Networks(DMFFPN), which is aimed at obtaining rich features as much as possible.
Specifically, the dense connection is designed to fully utilize the representation from the different convolutional layers.
Experiments on the drone-based datasets named VisDrone-DET suggest a competitive performance of our method.
arXiv Detail & Related papers (2020-12-19T10:05:31Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
We propose a novel Cross-layer Feature Pyramid Network to improve the progressive fusion in salient object detection.
The distributed features per layer own both semantics and salient details from all other layers simultaneously, and suffer reduced loss of important information.
arXiv Detail & Related papers (2020-02-25T14:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.