Convolutional Feature Enhancement and Attention Fusion BiFPN for Ship Detection in SAR Images
- URL: http://arxiv.org/abs/2506.15231v1
- Date: Wed, 18 Jun 2025 08:14:28 GMT
- Title: Convolutional Feature Enhancement and Attention Fusion BiFPN for Ship Detection in SAR Images
- Authors: Liangjie Meng, Danxia Li, Jinrong He, Lili Ma, Zhixin Li,
- Abstract summary: This paper proposes a novel feature enhancement and fusion framework named C-AFBiFPN.<n>C-AFBiFPN constructs a Convolutional Feature Enhancement (CFE) module following the backbone network.<n>C-AFBiFPN innovatively integrates BiFormer attention within the fusion strategy of BiFPN, creating the AFBiFPN network.
- Score: 3.1536619649037716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic Aperture Radar (SAR) enables submeter-resolution imaging and all-weather monitoring via active microwave and advanced signal processing. Currently, SAR has found extensive applications in critical maritime domains such as ship detection. However, SAR ship detection faces several challenges, including significant scale variations among ships, the presence of small offshore vessels mixed with noise, and complex backgrounds for large nearshore ships. To address these issues, this paper proposes a novel feature enhancement and fusion framework named C-AFBiFPN. C-AFBiFPN constructs a Convolutional Feature Enhancement (CFE) module following the backbone network, aiming to enrich feature representation and enhance the ability to capture and represent local details and contextual information. Furthermore, C-AFBiFPN innovatively integrates BiFormer attention within the fusion strategy of BiFPN, creating the AFBiFPN network. AFBiFPN improves the global modeling capability of cross-scale feature fusion and can adaptively focus on critical feature regions. The experimental results on SAR Ship Detection Dataset (SSDD) indicate that the proposed approach substantially enhances detection accuracy for small targets, robustness against occlusions, and adaptability to multi-scale features.
Related papers
- Enhancing, Refining, and Fusing: Towards Robust Multi-Scale and Dense Ship Detection [7.208605594108282]
We propose a novel framework, Center-Aware SAR Ship Detector (CASS-Det), for robust multi-scale and densely packed ship detection.<n>CASS-Det integrates three key innovations: (1) a center enhancement module (CEM) that employs rotational convolution to emphasize ship centers; (2) a neighbor attention module (NAM) that leverages cross-layer dependencies to refine ship boundaries in densely populated scenes; and (3) a cross-connected feature pyramid network (CC-FPN) that enhances multi-scale feature fusion.
arXiv Detail & Related papers (2025-01-10T15:33:37Z) - Multitask Learning for SAR Ship Detection with Gaussian-Mask Joint Segmentation [20.540873039361102]
This paper proposes a multitask learning framework for SAR ship detection, consisting of object detection, speckle suppression, and target segmentation tasks.
An angle classification loss with aspect ratio weighting is introduced to improve detection accuracy by addressing angular periodicity and object proportions.
The speckle suppression task uses a dual-feature fusion attention mechanism to reduce noise and fuse shallow and denoising features, enhancing robustness.
The target segmentation task, leveraging a rotated Gaussian-mask, aids the network in extracting target regions from cluttered backgrounds and improves detection efficiency with pixel-level predictions.
arXiv Detail & Related papers (2024-11-21T05:10:41Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
We design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction.
Renormalized connection (RC) on the KDN enables synergistic focusing'' of multi-scale features.
RCs extend the multi-level feature's divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks.
arXiv Detail & Related papers (2024-09-09T13:56:22Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
Experimental results on three SAR datasets demonstrate that our WBANet significantly outperforms contemporary state-of-the-art methods.
Our WBANet achieves 98.33%, 96.65%, and 96.62% of percentage of correct classification (PCC) on the respective datasets.
arXiv Detail & Related papers (2024-07-18T04:36:10Z) - AMANet: Advancing SAR Ship Detection with Adaptive Multi-Hierarchical
Attention Network [0.5437298646956507]
A novel adaptive multi-hierarchical attention module (AMAM) is proposed to learn multi-scale features and adaptively aggregate salient features from various feature layers.
We first fuse information from adjacent feature layers to enhance the detection of smaller targets, thereby achieving multi-scale feature enhancement.
Thirdly, we present a novel adaptive multi-hierarchical attention network (AMANet) by embedding the AMAM between the backbone network and the feature pyramid network.
arXiv Detail & Related papers (2024-01-24T03:56:33Z) - Multi-scale direction-aware SAR object detection network via global information fusion [18.997878517911378]
This paper proposes SAR-Net, a novel framework specifically designed for global fusion of direction-aware information in SAR object detection.
UCM and DAM enable efficient global information fusion and transmission.
Experiments demonstrate the effectiveness of SAR-Net, achieving state-of-the-art results on aircraft and ship datasets.
arXiv Detail & Related papers (2023-12-28T10:40:11Z) - SAR-ShipNet: SAR-Ship Detection Neural Network via Bidirectional
Coordinate Attention and Multi-resolution Feature Fusion [7.323279438948967]
This paper studies a practically meaningful ship detection problem from synthetic aperture radar (SAR) images by the neural network.
We propose a SAR-ship detection neural network (call SAR-ShipNet for short), by newly developing Bidirectional Coordinate Attention (BCA) and Multi-resolution Feature Fusion (MRF) based on CenterNet.
Experimental results on the public SAR-Ship dataset show that our SAR-ShipNet achieves competitive advantages in both speed and accuracy.
arXiv Detail & Related papers (2022-03-29T12:27:04Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Dense Attention Fluid Network for Salient Object Detection in Optical
Remote Sensing Images [193.77450545067967]
We propose an end-to-end Dense Attention Fluid Network (DAFNet) for salient object detection in optical remote sensing images (RSIs)
A Global Context-aware Attention (GCA) module is proposed to adaptively capture long-range semantic context relationships.
We construct a new and challenging optical RSI dataset for SOD that contains 2,000 images with pixel-wise saliency annotations.
arXiv Detail & Related papers (2020-11-26T06:14:10Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.