Generating Synthetic Health Sensor Data for Privacy-Preserving Wearable Stress Detection
- URL: http://arxiv.org/abs/2401.13327v2
- Date: Tue, 14 May 2024 10:01:57 GMT
- Title: Generating Synthetic Health Sensor Data for Privacy-Preserving Wearable Stress Detection
- Authors: Lucas Lange, Nils Wenzlitschke, Erhard Rahm,
- Abstract summary: We introduce the privacy-aware synthetization of multi-sensor smartwatch health readings related to moments of stress.
Our method not only protects patient information but also enhances data availability for research.
- Score: 1.3604778572442302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smartwatch health sensor data are increasingly utilized in smart health applications and patient monitoring, including stress detection. However, such medical data often comprise sensitive personal information and are resource-intensive to acquire for research purposes. In response to this challenge, we introduce the privacy-aware synthetization of multi-sensor smartwatch health readings related to moments of stress, employing Generative Adversarial Networks (GANs) and Differential Privacy (DP) safeguards. Our method not only protects patient information but also enhances data availability for research. To ensure its usefulness, we test synthetic data from multiple GANs and employ different data enhancement strategies on an actual stress detection task. Our GAN-based augmentation methods demonstrate significant improvements in model performance, with private DP training scenarios observing an 11.90-15.48% increase in F1-score, while non-private training scenarios still see a 0.45% boost. These results underline the potential of differentially private synthetic data in optimizing utility-privacy trade-offs, especially with the limited availability of real training samples. Through rigorous quality assessments, we confirm the integrity and plausibility of our synthetic data, which, however, are significantly impacted when increasing privacy requirements.
Related papers
- Controllable Synthetic Clinical Note Generation with Privacy Guarantees [7.1366477372157995]
In this paper, we introduce a novel method to "clone" datasets containing Personal Health Information (PHI)
Our approach ensures that the cloned datasets retain the essential characteristics and utility of the original data without compromising patient privacy.
We conduct utility testing to evaluate the performance of machine learning models trained on the cloned datasets.
arXiv Detail & Related papers (2024-09-12T07:38:34Z) - Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data [5.448470199971472]
Deep learning holds immense promise for aiding radiologists in breast cancer detection.
achieving optimal model performance is hampered by limitations in availability and sharing of data.
Traditional deep learning models can inadvertently leak sensitive training information.
This work addresses these challenges exploring quantifying the utility of privacy-preserving deep learning techniques.
arXiv Detail & Related papers (2024-07-17T15:52:45Z) - Protect and Extend -- Using GANs for Synthetic Data Generation of
Time-Series Medical Records [1.9749268648715583]
This research compares state-of-the-art GAN-based models for synthetic data generation to generate time-series synthetic medical records of dementia patients.
Our experiments indicate the superiority of the privacy-preserving GAN (PPGAN) model over other models regarding privacy preservation.
arXiv Detail & Related papers (2024-02-21T10:24:34Z) - Differential Private Federated Transfer Learning for Mental Health Monitoring in Everyday Settings: A Case Study on Stress Detection [4.439102809224707]
Mental health conditions necessitate efficient monitoring to mitigate their adverse impacts on life quality.
Existing approaches struggle with vulnerabilities to certain cyber-attacks and data insufficiency in real-world applications.
We introduce a differential private federated transfer learning framework for mental health monitoring to enhance data privacy and enrich data sufficiency.
arXiv Detail & Related papers (2024-02-16T18:00:04Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
The Internet of things (IoT) can significantly enhance the quality of human life, specifically in healthcare.
The human digital twin (HDT) is proposed as an innovative paradigm that can comprehensively characterize the replication of the individual human body.
HDT is envisioned to empower IoT-healthcare beyond the application of healthcare monitoring by acting as a versatile and vivid human digital testbed.
Recently, generative artificial intelligence (GAI) may be a promising solution because it can leverage advanced AI algorithms to automatically create, manipulate, and modify valuable while diverse data.
arXiv Detail & Related papers (2024-01-22T03:17:41Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging [47.99192239793597]
We evaluated the effect of privacy-preserving training of AI models regarding accuracy and fairness compared to non-private training.
Our study shows that -- under the challenging realistic circumstances of a real-life clinical dataset -- the privacy-preserving training of diagnostic deep learning models is possible with excellent diagnostic accuracy and fairness.
arXiv Detail & Related papers (2023-02-03T09:49:13Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - EVA: Generating Longitudinal Electronic Health Records Using Conditional
Variational Autoencoders [34.22731849545798]
We propose EHR Variational Autoencoder (EVA) for synthesizing sequences of discrete EHR encounters and encounter features.
We illustrate that EVA can produce realistic sequences, account for individual differences among patients, and can be conditioned on specific disease conditions.
We assess the utility of the methods on large real-world EHR repositories containing over 250, 000 patients.
arXiv Detail & Related papers (2020-12-18T02:37:49Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
We propose Gradient-sanitized Wasserstein Generative Adrial Networks (GS-WGAN)
GS-WGAN allows releasing a sanitized form of sensitive data with rigorous privacy guarantees.
We find our approach consistently outperforms state-of-the-art approaches across multiple metrics.
arXiv Detail & Related papers (2020-06-15T10:01:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.