Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey
- URL: http://arxiv.org/abs/2401.13699v2
- Date: Fri, 28 Jun 2024 11:49:52 GMT
- Title: Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey
- Authors: Jiayuan Chen, You Shi, Changyan Yi, Hongyang Du, Jiawen Kang, Dusit Niyato,
- Abstract summary: The Internet of things (IoT) can significantly enhance the quality of human life, specifically in healthcare.
The human digital twin (HDT) is proposed as an innovative paradigm that can comprehensively characterize the replication of the individual human body.
HDT is envisioned to empower IoT-healthcare beyond the application of healthcare monitoring by acting as a versatile and vivid human digital testbed.
Recently, generative artificial intelligence (GAI) may be a promising solution because it can leverage advanced AI algorithms to automatically create, manipulate, and modify valuable while diverse data.
- Score: 53.691704671844406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Internet of things (IoT) can significantly enhance the quality of human life, specifically in healthcare, attracting extensive attentions to IoT-healthcare services. Meanwhile, the human digital twin (HDT) is proposed as an innovative paradigm that can comprehensively characterize the replication of the individual human body in the digital world and reflect its physical status in real time. Naturally, HDT is envisioned to empower IoT-healthcare beyond the application of healthcare monitoring by acting as a versatile and vivid human digital testbed, simulating the outcomes and guiding the practical treatments. However, successfully establishing HDT requires high-fidelity virtual modeling and strong information interactions but possibly with scarce, biased and noisy data. Fortunately, a recent popular technology called generative artificial intelligence (GAI) may be a promising solution because it can leverage advanced AI algorithms to automatically create, manipulate, and modify valuable while diverse data. This survey particularly focuses on the implementation of GAI-driven HDT in IoT-healthcare. We start by introducing the background of IoT-healthcare and the potential of GAI-driven HDT. Then, we delve into the fundamental techniques and present the overall framework of GAI-driven HDT. After that, we explore the realization of GAI-driven HDT in detail, including GAI-enabled data acquisition, communication, data management, digital modeling, and data analysis. Besides, we discuss typical IoT-healthcare applications that can be revolutionized by GAI-driven HDT, namely personalized health monitoring and diagnosis, personalized prescription, and personalized rehabilitation. Finally, we conclude this survey by highlighting some future research directions.
Related papers
- Zero Shot Health Trajectory Prediction Using Transformer [11.660997334071952]
Enhanced Transformer for Health Outcome Simulation (ETHOS) is a novel application of the transformer deep-learning architecture for analyzing health data.
ETHOS is trained using Patient Health Timelines (PHTs)-detailed, tokenized records of health events-to predict future health trajectories.
arXiv Detail & Related papers (2024-07-30T18:33:05Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Towards Smart Healthcare: Challenges and Opportunities in IoT and ML [0.0]
The COVID-19 pandemic and other ongoing health crises have underscored the need for prompt healthcare services worldwide.
This chapter focuses exclusively on exploring the hurdles encountered when integrating machine learning methods into the IoT healthcare sector.
It offers a comprehensive summary of current research challenges and potential opportunities, categorized into three scenarios.
arXiv Detail & Related papers (2023-12-09T10:45:44Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making.
By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society.
arXiv Detail & Related papers (2023-10-27T02:58:11Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - A Health Monitoring System Based on Flexible Triboelectric Sensors for
Intelligence Medical Internet of Things and its Applications in Virtual
Reality [4.522609963399036]
The Internet of Medical Things (IoMT) is a platform that combines Internet of Things (IoT) technology with medical applications.
In this study, we designed a robust and intelligent IoMT system through the synergistic integration of flexible wearable triboelectric sensors and deep learning-assisted data analytics.
We embedded four triboelectric sensors into a wristband to detect and analyze limb movements in patients suffering from Parkinson's Disease (PD)
This innovative approach enabled us to accurately capture and scrutinize the subtle movements and fine motor of PD patients, thus providing insightful feedback and comprehensive assessment of the patients conditions.
arXiv Detail & Related papers (2023-09-13T01:01:16Z) - A Revolution of Personalized Healthcare: Enabling Human Digital Twin
with Mobile AIGC [54.74071593520785]
Mobile AIGC can be a key enabling technology for an emerging application, called human digital twin (HDT)
HDT empowered by the mobile AIGC is expected to revolutionize the personalized healthcare by generating rare disease data, modeling high-fidelity digital twin, building versatile testbeds, and providing 24/7 customized medical services.
arXiv Detail & Related papers (2023-07-22T15:59:03Z) - Human Body Digital Twin: A Master Plan [1.0812071024158496]
A human body digital twin (DT) is a virtual representation of an individual's physiological state, created using real-time data from sensors and medical test devices.
The human body DT has the potential to revolutionize healthcare and wellness, but its responsible and effective implementation requires consideration of various factors.
This article presents a comprehensive overview of the current status and future prospects of the human body DT and proposes a five-level roadmap for its development.
arXiv Detail & Related papers (2023-07-18T12:57:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.