論文の概要: Fine-Grained Stateful Knowledge Exploration: A Novel Paradigm for Integrating Knowledge Graphs with Large Language Models
- arxiv url: http://arxiv.org/abs/2401.13444v3
- Date: Mon, 27 Jan 2025 09:39:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:52:50.725223
- Title: Fine-Grained Stateful Knowledge Exploration: A Novel Paradigm for Integrating Knowledge Graphs with Large Language Models
- Title(参考訳): ファイングラインドステートフル知識探索:大規模言語モデルと知識グラフの統合のための新しいパラダイム
- Authors: Dehao Tao, Congqi Wang, Feng Huang, Junhao Chen, Yongfeng Huang, Minghu Jiang,
- Abstract要約: 大きな言語モデル(LLM)は印象的な能力を示していますが、その知識を更新することは大きな課題です。
既存のほとんどのメソッドは、質問を目的として扱うパラダイムを使用し、関連する知識は知識グラフから漸進的に取得される。
本稿では,情報粒度ミスマッチ問題に対処する,微粒なステートフル知識探索のための新しいパラダイムを提案する。
- 参考スコア(独自算出の注目度): 19.049828741139425
- License:
- Abstract: Large Language Models (LLMs) have shown impressive capabilities, yet updating their knowledge remains a significant challenge, often leading to outdated or inaccurate responses. A proposed solution is the integration of external knowledge bases, such as knowledge graphs, with LLMs. Most existing methods use a paradigm that treats the question as the objective, with relevant knowledge being incrementally retrieved from the knowledge graph. However, this strategy frequently experiences an mismatch in the granularity of knowledge between the target question and the entities and relations being retrieved. As a result, the information in the question cannot precisely correspond to the retrieved knowledge. This may cause redundant exploration or omission of vital knowledge, thereby leading to enhanced computational consumption and reduced retrieval accuracy. In this paper, we propose a novel paradigm of fine-grained stateful knowledge exploration, which addresses the `information granularity mismatch' issue. We extract fine-grained information from questions and explore the semantic mapping between this information and the knowledge in graph. By dynamically updating the mapping records, we avoid redundant exploration and ensure no pertinent information is overlooked, thereby reducing computational overhead and improving the accuracy of knowledge exploration. The use of fine-grained information also eliminates the need for a priori knowledge, a common requirement in existing methods. Experiments on multiple datasets revealed that our paradigm surpasses current advanced methods in knowledge retrieval while significantly reducing the average number of LLM invocations.
- Abstract(参考訳): 大きな言語モデル(LLM)は印象的な機能を示しているが、その知識を更新することは大きな課題であり、しばしば時代遅れまたは不正確な応答につながる。
提案された解決策は、知識グラフのような外部知識ベースとLLMとの統合である。
既存のほとんどのメソッドは、質問を目的として扱うパラダイムを使用し、関連する知識は知識グラフから漸進的に取得される。
しかし、この戦略は、対象の質問と検索対象のエンティティと関係の知識の粒度のミスマッチを頻繁に経験する。
結果として、質問の情報は、取得した知識と正確に対応できない。
これにより、余分な探索や重要な知識の欠落が生じ、計算消費が増大し、精度が低下する。
本稿では,「情報粒度ミスマッチ」問題に対処する,詳細な知識探索のための新しいパラダイムを提案する。
質問からきめ細かい情報を抽出し,この情報とグラフの知識のセマンティックマッピングを探索する。
マッピングレコードを動的に更新することにより、冗長な探索を回避し、関連する情報が見落とされないようにし、計算オーバーヘッドを低減し、知識探索の精度を向上させる。
きめ細かい情報を使用することは、既存のメソッドで共通の要件である優先順位知識の必要性を排除します。
複数のデータセットで実験したところ、我々のパラダイムは知識検索における現在の高度な手法を超越し、LLM呼び出しの平均回数を著しく減らしていることがわかった。
関連論文リスト
- Systematic Knowledge Injection into Large Language Models via Diverse Augmentation for Domain-Specific RAG [24.660769275714685]
Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) にドメイン知識を組み込む重要な手法として登場した。
本稿では,学習データを2つの方法で強化することで,微調整プロセスを大幅に強化する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-12T12:39:51Z) - LEKA:LLM-Enhanced Knowledge Augmentation [24.552995956148145]
人間は類推学習と知識伝達に優れる。
モデルは受動的に取得し、知識から積極的にアクセスし、学習するようになる。
知識伝達のための知識拡張手法LEKAを開発した。
論文 参考訳(メタデータ) (2025-01-29T17:44:57Z) - InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration [58.61492157691623]
知識を統合する手法が開発され、外部モジュールを通してLLMをドメイン固有の知識グラフに拡張した。
本研究は,未知の知識をLLMに効率的に統合することで,未知の知識を不要に重複させるという,新たな問題に焦点をあてる。
新しい知識を導入するリスクは、既存の知識を忘れることである。
論文 参考訳(メタデータ) (2024-02-18T03:36:26Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
本稿では,知識グラフに基づく拡張と合わせて,グラフ駆動型コンテキスト検索を組み合わせた新しいフレームワークを提案する。
我々は,様々なパラメータサイズを持つ大規模言語モデル(LLM)の実験を行い,知識の基盤化能力を評価し,オープンな質問に対する回答の事実的正確性を決定する。
われわれの方法であるGraphContextGenは、テキストベースの検索システムよりも一貫して優れており、その堅牢性と多くのユースケースへの適応性を実証している。
論文 参考訳(メタデータ) (2024-01-23T11:25:34Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
大規模言語モデル(LLM)は、下流の知識集約タスクのための情報検索技術より優れている。
しかし、コミュニティの懸念は、この無検閲の知識を使用することの事実と潜在的意味について多岐にわたる。
本研究では,6つの重要な視点から生成した知識を評価するために設計されたCONNERを紹介する。
論文 参考訳(メタデータ) (2023-10-11T08:22:37Z) - A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA [67.75989848202343]
本稿では,知識に基づくVQAに向けて,エンド・ツー・エンドのレトリバー・リーダー・フレームワークを提案する。
我々は、視覚言語による事前学習モデルからの多モーダルな暗黙の知識に光を当て、知識推論の可能性を掘り下げた。
提案手法では,知識検索のガイダンスを提供するだけでなく,質問応答に対してエラーが発生しやすいケースも排除できる。
論文 参考訳(メタデータ) (2022-06-30T02:35:04Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
本稿では,事前学習したLMから任意の関係を持つ大規模KGを抽出する手法を提案する。
関係定義の最小限の入力により、アプローチは膨大な実体対空間を効率的に探索し、多様な正確な知識を抽出する。
我々は、異なるLMから400以上の新しい関係を持つKGを収穫するためのアプローチを展開している。
論文 参考訳(メタデータ) (2022-06-28T19:46:29Z) - Incremental Knowledge Based Question Answering [52.041815783025186]
人間と同じように学習能力を段階的に拡張できるインクリメンタルKBQA学習フレームワークを提案します。
具体的には、破滅的な忘れ問題を克服するために、マージン希釈損失と協調選択方法からなる。
包括的な実験は、進化する知識ベースに取り組む際にその効果と効率を示す。
論文 参考訳(メタデータ) (2021-01-18T09:03:38Z) - KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain
Knowledge-Based VQA [107.7091094498848]
VQAの最も難しい質問の1つは、質問に答えるために画像に存在しない外部の知識を必要とする場合です。
本研究では,解答に必要な知識が与えられたり記入されたりしないオープンドメイン知識を,トレーニング時やテスト時にも検討する。
知識表現と推論には2つのタイプがあります。
まず、トランスベースのモデルで教師なし言語事前トレーニングと教師付きトレーニングデータから効果的に学ぶことができる暗黙的な知識。
論文 参考訳(メタデータ) (2020-12-20T20:13:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。