論文の概要: Fine-Grained Stateful Knowledge Exploration: A Novel Paradigm for Integrating Knowledge Graphs with Large Language Models
- arxiv url: http://arxiv.org/abs/2401.13444v3
- Date: Mon, 27 Jan 2025 09:39:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:52:50.725223
- Title: Fine-Grained Stateful Knowledge Exploration: A Novel Paradigm for Integrating Knowledge Graphs with Large Language Models
- Title(参考訳): ファイングラインドステートフル知識探索:大規模言語モデルと知識グラフの統合のための新しいパラダイム
- Authors: Dehao Tao, Congqi Wang, Feng Huang, Junhao Chen, Yongfeng Huang, Minghu Jiang,
- Abstract要約: 大きな言語モデル(LLM)は印象的な能力を示していますが、その知識を更新することは大きな課題です。
既存のほとんどのメソッドは、質問を目的として扱うパラダイムを使用し、関連する知識は知識グラフから漸進的に取得される。
本稿では,情報粒度ミスマッチ問題に対処する,微粒なステートフル知識探索のための新しいパラダイムを提案する。
- 参考スコア(独自算出の注目度): 19.049828741139425
- License:
- Abstract: Large Language Models (LLMs) have shown impressive capabilities, yet updating their knowledge remains a significant challenge, often leading to outdated or inaccurate responses. A proposed solution is the integration of external knowledge bases, such as knowledge graphs, with LLMs. Most existing methods use a paradigm that treats the question as the objective, with relevant knowledge being incrementally retrieved from the knowledge graph. However, this strategy frequently experiences an mismatch in the granularity of knowledge between the target question and the entities and relations being retrieved. As a result, the information in the question cannot precisely correspond to the retrieved knowledge. This may cause redundant exploration or omission of vital knowledge, thereby leading to enhanced computational consumption and reduced retrieval accuracy. In this paper, we propose a novel paradigm of fine-grained stateful knowledge exploration, which addresses the `information granularity mismatch' issue. We extract fine-grained information from questions and explore the semantic mapping between this information and the knowledge in graph. By dynamically updating the mapping records, we avoid redundant exploration and ensure no pertinent information is overlooked, thereby reducing computational overhead and improving the accuracy of knowledge exploration. The use of fine-grained information also eliminates the need for a priori knowledge, a common requirement in existing methods. Experiments on multiple datasets revealed that our paradigm surpasses current advanced methods in knowledge retrieval while significantly reducing the average number of LLM invocations.
- Abstract(参考訳): 大きな言語モデル(LLM)は印象的な機能を示しているが、その知識を更新することは大きな課題であり、しばしば時代遅れまたは不正確な応答につながる。
提案された解決策は、知識グラフのような外部知識ベースとLLMとの統合である。
既存のほとんどのメソッドは、質問を目的として扱うパラダイムを使用し、関連する知識は知識グラフから漸進的に取得される。
しかし、この戦略は、対象の質問と検索対象のエンティティと関係の知識の粒度のミスマッチを頻繁に経験する。
結果として、質問の情報は、取得した知識と正確に対応できない。
これにより、余分な探索や重要な知識の欠落が生じ、計算消費が増大し、精度が低下する。
本稿では,「情報粒度ミスマッチ」問題に対処する,詳細な知識探索のための新しいパラダイムを提案する。
質問からきめ細かい情報を抽出し,この情報とグラフの知識のセマンティックマッピングを探索する。
マッピングレコードを動的に更新することにより、冗長な探索を回避し、関連する情報が見落とされないようにし、計算オーバーヘッドを低減し、知識探索の精度を向上させる。
きめ細かい情報を使用することは、既存のメソッドで共通の要件である優先順位知識の必要性を排除します。
複数のデータセットで実験したところ、我々のパラダイムは知識検索における現在の高度な手法を超越し、LLM呼び出しの平均回数を著しく減らしていることがわかった。
関連論文リスト
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
大規模言語モデル(LLM)は通常、知識材料を瞬時に活用するために、検索強化世代に依存している。
本稿では,知識ベースを含む下流タスクへの効率的な適応を目的としたKBAlignを提案する。
提案手法は,Q&Aペアやリビジョン提案などの自己注釈付きデータを用いて反復学習を行い,モデルが知識内容を効率的に把握できるようにする。
論文 参考訳(メタデータ) (2024-11-22T08:21:03Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
大規模言語モデル(LLM)は、その実践的応用でますます認識されている。
Retrieval-Augmented Generation (RAG)はこの課題に取り組み、LLMに大きな影響を与えている。
中立あるいは有害な結果をもたらす検索要求を最小化することにより、時間と計算コストの両方を効果的に削減できる。
論文 参考訳(メタデータ) (2024-11-09T15:12:28Z) - Combining LLMs and Knowledge Graphs to Reduce Hallucinations in Question Answering [0.0]
大言語モデル(LLM)と知識グラフ(KG)を組み合わせて、質問応答システムの精度と信頼性を向上させる。
提案手法は,LLM生成クエリの構文的および意味論的妥当性を保証するクエリチェッカーを組み込んだものである。
このアプローチをアクセス可能にするため、ユーザフレンドリーなWebベースのインターフェースが開発されている。
論文 参考訳(メタデータ) (2024-09-06T10:49:46Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - Infusing Knowledge into Large Language Models with Contextual Prompts [5.865016596356753]
入力テキスト中の文脈からプロンプトを生成することにより,知識注入のためのシンプルだが一般化可能なアプローチを提案する。
本実験は, 微調整LDMを用いて評価する手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-03T11:19:26Z) - Query of CC: Unearthing Large Scale Domain-Specific Knowledge from
Public Corpora [104.16648246740543]
大規模言語モデルに基づく効率的なデータ収集手法を提案する。
この方法は、大きな言語モデルを通してシード情報をブートストラップし、公開コーパスから関連データを検索する。
特定のドメインに関する知識関連のデータを収集するだけでなく、潜在的な推論手順でデータを抽出する。
論文 参考訳(メタデータ) (2024-01-26T03:38:23Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
大規模言語モデル(LLM)はタスク固有の微調整なしで優れた性能を示す。
検索に基づく手法は、非パラメトリックな世界知識を提供し、質問応答のようなタスクのパフォーマンスを向上させることができる。
SKR(Self-Knowledge guided Retrieval augmentation)は、LLMがこれまで遭遇した質問を参照できるようにする、シンプルで効果的な方法である。
論文 参考訳(メタデータ) (2023-10-08T04:22:33Z) - Graph Neural Prompting with Large Language Models [32.97391910476073]
Graph Neural Prompting (GNP)は、知識グラフから有益な知識を学ぶために、事前訓練された言語モデルを支援するための新しいプラグアンドプレイ方式である。
複数のデータセットに対する大規模な実験は、常識的および生物医学的推論タスクにおいて、GNPの優位性を示す。
論文 参考訳(メタデータ) (2023-09-27T06:33:29Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - Large Language Models Can Be Easily Distracted by Irrelevant Context [29.315230178997002]
本研究では,モデル解の精度が無関係な文脈によってどのように影響されるかを検討する。
我々は,大規模言語モデルにおける最先端のプロンプト手法の散らかしやすさをベンチマークで測定する。
論文 参考訳(メタデータ) (2023-01-31T20:48:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。