論文の概要: Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable?
- arxiv url: http://arxiv.org/abs/2401.13544v1
- Date: Wed, 24 Jan 2024 16:02:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-25 14:05:08.242682
- Title: Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable?
- Title(参考訳): コンセプトボトルネックモデルを超えて:ブラックボックスを相互利用可能にするには?
- Authors: Ri\v{c}ards Marcinkevi\v{c}s, Sonia Laguna, Moritz Vandenhirtz, Julia
E. Vogt
- Abstract要約: 本稿では,すでに訓練済みのニューラルネットワークに対して,概念に基づく介入を行う手法を提案する。
本稿では,概念に基づく介入の有効性の尺度として,モデルの介入可能性について定式化する。
微調整は介入効率を向上し、しばしばより良い校正予測をもたらすことを示す。
- 参考スコア(独自算出の注目度): 9.002523763052848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, interpretable machine learning has re-explored concept bottleneck
models (CBM), comprising step-by-step prediction of the high-level concepts
from the raw features and the target variable from the predicted concepts. A
compelling advantage of this model class is the user's ability to intervene on
the predicted concept values, affecting the model's downstream output. In this
work, we introduce a method to perform such concept-based interventions on
already-trained neural networks, which are not interpretable by design, given
an annotated validation set. Furthermore, we formalise the model's
intervenability as a measure of the effectiveness of concept-based
interventions and leverage this definition to fine-tune black-box models.
Empirically, we explore the intervenability of black-box classifiers on
synthetic tabular and natural image benchmarks. We demonstrate that fine-tuning
improves intervention effectiveness and often yields better-calibrated
predictions. To showcase the practical utility of the proposed techniques, we
apply them to deep chest X-ray classifiers and show that fine-tuned black boxes
can be as intervenable and more performant than CBMs.
- Abstract(参考訳): 近年、解釈可能な機械学習は概念ボトルネックモデル (CBM) を再探索し、生の特徴から高レベルの概念を段階的に予測し、予測された概念からターゲット変数を推定する。
このモデルクラスの魅力的な利点は、ユーザが予測された概念値に介入し、モデルの下流出力に影響を与える能力である。
本研究では,アノテートされた検証セットを与えられた設計では解釈できないニューラルネットワークに対して,そのような概念に基づく介入を行う手法を提案する。
さらに,概念に基づく介入の有効性の尺度としてモデルの介入性を定式化し,その定義をブラックボックスモデルに活用する。
実験では,合成表型および自然画像ベンチマークにおけるブラックボックス分類器の相互利用性について検討する。
微調整は介入効率を向上し、しばしばより良い校正予測をもたらすことを示す。
提案手法の実用性を実証するため, 深部胸部X線分類器に適用し, 微調整したブラックボックスはCBMよりもインターベンタブルで高性能であることを示す。
関連論文リスト
- Bayesian Concept Bottleneck Models with LLM Priors [9.368695619127084]
概念ボトルネックモデル (CBM) は、ホワイトボックスモデルとブラックボックスモデルの間の妥協として提案されており、精度を犠牲にすることなく解釈性を実現することを目的としている。
BC-LLM はベイズフレームワーク内の潜在的無限の概念を反復的に探索し、Large Language Models (LLM) が概念抽出のメカニズムと事前の両方として機能する。
論文 参考訳(メタデータ) (2024-10-21T01:00:33Z) - MulCPred: Learning Multi-modal Concepts for Explainable Pedestrian Action Prediction [57.483718822429346]
MulCPredは、トレーニングサンプルで表されるマルチモーダルな概念に基づいて、その予測を説明する。
MulCPredは複数のデータセットとタスクで評価される。
論文 参考訳(メタデータ) (2024-09-14T14:15:28Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - Concept Bottleneck Models Without Predefined Concepts [26.156636891713745]
入力に依存した概念選択機構を導入し、すべてのクラスで小さな概念のサブセットが使用されることを保証します。
提案手法は, ダウンストリーム性能を改善し, ブラックボックスモデルの性能ギャップを狭めるものである。
論文 参考訳(メタデータ) (2024-07-04T13:34:50Z) - ClassDiffusion: More Aligned Personalization Tuning with Explicit Class Guidance [78.44823280247438]
新しい概念を学ぶ際に,意味的保存損失を利用して概念空間を明示的に制御する手法であるClassDiffusionを提案する。
その単純さにもかかわらず、これはターゲット概念を微調整する際のセマンティックドリフトを避けるのに役立つ。
CLIP-T測定値の非効率な評価に対して,BLIP2-T測定値を導入する。
論文 参考訳(メタデータ) (2024-05-27T17:50:10Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning [86.15009879251386]
概念ボトルネックモデル(CBM)を用いた新しいアーキテクチャと説明可能な分類法を提案する。
CBMには、さらなる概念のセットが必要である。
CLIPをベースとしたボトルネックモデルにおいて,スパース隠れ層を用いた精度の大幅な向上を示す。
論文 参考訳(メタデータ) (2024-04-04T09:43:43Z) - Black-Box Tuning of Vision-Language Models with Effective Gradient
Approximation [71.21346469382821]
ブラックボックスモデルに対するテキストプロンプト最適化と出力特徴適応のための協調ブラックボックスチューニング(CBBT)を導入する。
CBBTは11のダウンストリームベンチマークで広範囲に評価され、既存のブラックボックスVL適応法と比較して顕著に改善されている。
論文 参考訳(メタデータ) (2023-12-26T06:31:28Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
コンセプト・ボトルネック・モデル (Concept Bottleneck Models, CBM) は導入以来人気を集めている。
CBMは基本的に、モデルの潜在空間を人間に理解可能な高レベルな概念に制限する。
本稿では,協調型コンセプション・ボトルネックモデル(coop-CBM)を提案し,性能トレードオフを克服する。
論文 参考訳(メタデータ) (2023-11-18T15:50:07Z) - Learning to Receive Help: Intervention-Aware Concept Embedding Models [44.1307928713715]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、高レベルの概念セットを使用して予測を構築し、説明することによって、ニューラルネットワークの不透明さに対処する。
近年の研究では、介入効果は概念が介入される順序に大きく依存していることが示されている。
IntCEM(Intervention-Aware Concept Embedding Model)は,テスト時間介入に対するモデルの受容性を改善する新しいCBMアーキテクチャとトレーニングパラダイムである。
論文 参考訳(メタデータ) (2023-09-29T02:04:24Z) - Concept Bottleneck Model with Additional Unsupervised Concepts [0.5939410304994348]
概念ボトルネックモデル(CBM)に基づく新しい解釈可能なモデルを提案する。
CBMは概念ラベルを使用して、中間層を追加の可視層としてトレーニングする。
これら2つの概念をシームレスにトレーニングし,計算量を削減することにより,教師付き概念と教師なし概念を同時に得ることができる。
論文 参考訳(メタデータ) (2022-02-03T08:30:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。