論文の概要: Benchmarking the Fairness of Image Upsampling Methods
- arxiv url: http://arxiv.org/abs/2401.13555v3
- Date: Mon, 29 Apr 2024 12:39:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 11:00:55.830959
- Title: Benchmarking the Fairness of Image Upsampling Methods
- Title(参考訳): イメージアップサンプリング手法の妥当性のベンチマーク
- Authors: Mike Laszkiewicz, Imant Daunhawer, Julia E. Vogt, Asja Fischer, Johannes Lederer,
- Abstract要約: 本研究では,条件付き生成モデルの性能と公平性を示す指標のセットを開発する。
私たちは彼らの不均衡と多様性をベンチマークします。
この研究の一環として、データセットのサブセットは、一般的な顔の人種分布を再現する。
- 参考スコア(独自算出の注目度): 29.01986714656294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have witnessed a rapid development of deep generative models for creating synthetic media, such as images and videos. While the practical applications of these models in everyday tasks are enticing, it is crucial to assess the inherent risks regarding their fairness. In this work, we introduce a comprehensive framework for benchmarking the performance and fairness of conditional generative models. We develop a set of metrics$\unicode{x2013}$inspired by their supervised fairness counterparts$\unicode{x2013}$to evaluate the models on their fairness and diversity. Focusing on the specific application of image upsampling, we create a benchmark covering a wide variety of modern upsampling methods. As part of the benchmark, we introduce UnfairFace, a subset of FairFace that replicates the racial distribution of common large-scale face datasets. Our empirical study highlights the importance of using an unbiased training set and reveals variations in how the algorithms respond to dataset imbalances. Alarmingly, we find that none of the considered methods produces statistically fair and diverse results. All experiments can be reproduced using our provided repository.
- Abstract(参考訳): 近年、画像やビデオなどの合成メディアを作成するための深層生成モデルの開発が急速に進んでいる。
日常業務におけるこれらのモデルの実践的応用は注目されているが、その公正性に関する本質的なリスクを評価することは重要である。
本研究では,条件付き生成モデルの性能と公平性をベンチマークする包括的なフレームワークを提案する。
我々は、その公正さと多様性のモデルを評価するために、教師付きフェアネスの指標である$\unicode{x2013}$インスパイアされたメトリクスのセットを開発する。
画像アップサンプリングの特定の応用に焦点を当てて、様々な現代的なアップサンプリング手法をカバーするベンチマークを作成する。
ベンチマークの一環として、FairFaceのサブセットであるUnfairFaceを紹介します。
実験的な研究は、偏りのないトレーニングセットを使用することの重要性を強調し、アルゴリズムがデータセットの不均衡にどのように反応するかを明らかにする。
また,どの手法も統計的に公平で多様な結果が得られないことがわかった。
すべての実験は、提供されたリポジトリを使って再現できます。
関連論文リスト
- LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content [62.816876067499415]
我々は、科学的ArXiv論文に基づくスケーラブルな進化型ライブベンチマークであるLiveXivを提案する。
LiveXivは、任意のタイムスタンプでドメイン固有の原稿にアクセスし、視覚的な問合せペアを自動的に生成することを提案する。
ベンチマークの最初のバージョンで、複数のオープンでプロプライエタリなLMM(Large Multi-modal Models)をベンチマークし、その挑戦的な性質を示し、モデルの真の能力を明らかにする。
論文 参考訳(メタデータ) (2024-10-14T17:51:23Z) - Fast LiDAR Upsampling using Conditional Diffusion Models [1.3709133749179265]
既存の手法は拡散モデルを用いて高忠実度で洗練されたLiDARデータを生成する可能性を示している。
高速かつ高品質な3次元シーンポイント雲のスパース・ツー・デンスアップサンプリングのための条件拡散モデルに基づく新しいアプローチを提案する。
本手法では,条件付き塗装マスクを用いて訓練した拡散確率モデルを用いて,画像補完タスクの性能向上を図っている。
論文 参考訳(メタデータ) (2024-05-08T08:38:28Z) - FairGridSearch: A Framework to Compare Fairness-Enhancing Models [0.0]
本稿では、二項分類に焦点を当て、公平性向上モデルを比較するための新しいフレームワークであるFairGridSearchを提案する。
この研究は、FairGridSearchを3つの一般的なデータセット(Adult, COMPAS, German Credit)に適用し、計量選択、基底推定器の選択、分類しきい値がモデルフェアネスに与える影響を分析する。
論文 参考訳(メタデータ) (2024-01-04T10:29:02Z) - Deep Boosting Multi-Modal Ensemble Face Recognition with Sample-Level
Weighting [11.39204323420108]
深層畳み込みニューラルネットワークは顔認識において顕著な成功を収めた。
現在のトレーニングベンチマークは、不均衡な品質分布を示している。
これは、訓練中に不足しているため、ハードサンプルの一般化に問題を引き起こす。
有名なAdaBoostにインスパイアされた本研究では、FR損失に異なるサンプルの重要性を組み込むためのサンプルレベルの重み付け手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T01:44:54Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - fAux: Testing Individual Fairness via Gradient Alignment [2.5329739965085785]
いずれの要件も持たない個別の公正性をテストするための新しいアプローチについて述べる。
提案手法は,合成データセットと実世界のデータセットの識別を効果的に行う。
論文 参考訳(メタデータ) (2022-10-10T21:27:20Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
既存のモデルは、いわゆる"近く分布"設定で失敗するか、劇的な低下に直面します。
本稿では, スコアに基づく生成モデルを用いて, 合成近分布異常データを生成することを提案する。
本手法は,9つのノベルティ検出ベンチマークにおいて,近分布ノベルティ検出を6%改善し,最先端のノベルティ検出を1%から5%パスする。
論文 参考訳(メタデータ) (2022-05-28T02:02:53Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
画像歪みの存在下での4つの最先端深層顔認識モデルの性能評価を行った。
我々は、画像歪みが、異なるサブグループ間でのモデルの性能ギャップと関係していることを観察した。
論文 参考訳(メタデータ) (2021-08-14T16:49:05Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Minority Class Oversampling for Tabular Data with Deep Generative Models [4.976007156860967]
オーバーサンプリングによる非バランスな分類タスクの性能向上を図るために, 深層生成モデルを用いて現実的なサンプルを提供する能力について検討した。
実験の結果,サンプリング手法は品質に影響を与えないが,実行環境は様々であることがわかった。
また、性能指標の点でも改善が重要であるが、絶対的な点では小さな点がしばしば見られる。
論文 参考訳(メタデータ) (2020-05-07T21:35:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。