WPDA: Frequency-based Backdoor Attack with Wavelet Packet Decomposition
- URL: http://arxiv.org/abs/2401.13578v2
- Date: Fri, 24 May 2024 07:59:58 GMT
- Title: WPDA: Frequency-based Backdoor Attack with Wavelet Packet Decomposition
- Authors: Zhengyao Song, Yongqiang Li, Danni Yuan, Li Liu, Shaokui Wei, Baoyuan Wu,
- Abstract summary: This work explores an emerging security threat against deep neural networks (DNNs) based image classification, i.e., backdoor attack.
We propose a novel frequency-based backdoor attack via Wavelet Packet Decomposition (WPD)
Our method is stealthy and precise, evidenced by the 98.12% Attack Success Rate (ASR) on CIFAR-10 with the extremely low poisoning ratio 0.004%.
- Score: 30.199136831047063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work explores an emerging security threat against deep neural networks (DNNs) based image classification, i.e., backdoor attack. In this scenario, the attacker aims to inject a backdoor into the model by manipulating training data, such that the backdoor could be activated by a particular trigger and bootstraps the model to make a target prediction at inference. Currently, most existing data poisoning-based attacks struggle to achieve success at low poisoning ratios, increasing the risk of being defended by defense methods. In this paper, we propose a novel frequency-based backdoor attack via Wavelet Packet Decomposition (WPD), WPD decomposes the original image signal to a spectrogram that contains frequency information with different semantic meanings. We leverage WPD to statistically analyze the frequency distribution of the dataset to infer the key frequency regions the DNNs would focus on, and the trigger information is only injected into the key frequency regions. Our method mainly includes three parts: 1) the selection of the poisoning frequency regions in spectrogram; 2) trigger generation; 3) the generation of the poisoned dataset. Our method is stealthy and precise, evidenced by the 98.12% Attack Success Rate (ASR) on CIFAR-10 with the extremely low poisoning ratio 0.004% (i.e., only 2 poisoned samples among 50,000 training samples) and can bypass most existing defense methods. Besides, we also provide visualization analyses to explain why our method works.
Related papers
- T2IShield: Defending Against Backdoors on Text-to-Image Diffusion Models [70.03122709795122]
We propose a comprehensive defense method named T2IShield to detect, localize, and mitigate backdoor attacks.
We find the "Assimilation Phenomenon" on the cross-attention maps caused by the backdoor trigger.
For backdoor sample detection, T2IShield achieves a detection F1 score of 88.9$%$ with low computational cost.
arXiv Detail & Related papers (2024-07-05T01:53:21Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - SATBA: An Invisible Backdoor Attack Based On Spatial Attention [7.405457329942725]
Backdoor attacks involve the training of Deep Neural Network (DNN) on datasets that contain hidden trigger patterns.
Most existing backdoor attacks suffer from two significant drawbacks: their trigger patterns are visible and easy to detect by backdoor defense or even human inspection.
We propose a novel backdoor attack named SATBA that overcomes these limitations using spatial attention and an U-net based model.
arXiv Detail & Related papers (2023-02-25T10:57:41Z) - Invisible Backdoor Attacks Using Data Poisoning in the Frequency Domain [8.64369418938889]
We propose a generalized backdoor attack method based on the frequency domain.
It can implement backdoor implantation without mislabeling and accessing the training process.
We evaluate our approach in the no-label and clean-label cases on three datasets.
arXiv Detail & Related papers (2022-07-09T07:05:53Z) - Imperceptible Backdoor Attack: From Input Space to Feature
Representation [24.82632240825927]
Backdoor attacks are rapidly emerging threats to deep neural networks (DNNs)
In this paper, we analyze the drawbacks of existing attack approaches and propose a novel imperceptible backdoor attack.
Our trigger only modifies less than 1% pixels of a benign image while the magnitude is 1.
arXiv Detail & Related papers (2022-05-06T13:02:26Z) - PiDAn: A Coherence Optimization Approach for Backdoor Attack Detection
and Mitigation in Deep Neural Networks [22.900501880865658]
Backdoor attacks impose a new threat in Deep Neural Networks (DNNs)
We propose PiDAn, an algorithm based on coherence optimization purifying the poisoned data.
Our PiDAn algorithm can detect more than 90% infected classes and identify 95% poisoned samples.
arXiv Detail & Related papers (2022-03-17T12:37:21Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.