論文の概要: Local Privacy-preserving Mechanisms and Applications in Machine Learning
- arxiv url: http://arxiv.org/abs/2401.13692v1
- Date: Mon, 8 Jan 2024 22:29:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 08:17:26.334889
- Title: Local Privacy-preserving Mechanisms and Applications in Machine Learning
- Title(参考訳): 機械学習におけるローカルプライバシ保護機構と応用
- Authors: Likun Qin, Tianshuo Qiu,
- Abstract要約: ローカル微分プライバシ(LDP)は、データ収集と処理の段階において、個々のユーザに対して強力なプライバシ保護を提供する。
プライバシ保護メカニズムの主要な応用の1つは、機械学習である。
- 参考スコア(独自算出の注目度): 0.21268495173320798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence and evolution of Local Differential Privacy (LDP) and its various adaptations play a pivotal role in tackling privacy issues related to the vast amounts of data generated by intelligent devices, which are crucial for data-informed decision-making in the realm of crowdsensing. Utilizing these extensive datasets can provide critical insights but also introduces substantial privacy concerns for the individuals involved. LDP, noted for its decentralized framework, excels in providing strong privacy protection for individual users during the stages of data collection and processing. The core principle of LDP lies in its technique of altering each user's data locally at the client end before it is sent to the server, thus preventing privacy violations at both stages. There are many LDP variances in the privacy research community aimed to improve the utility-privacy tradeoff. On the other hand, one of the major applications of the privacy-preserving mechanisms is machine learning. In this paper, we firstly delves into a comprehensive analysis of LDP and its variances, focusing on their various models, the diverse range of its adaptations, and the underlying structure of privacy mechanisms; then we discuss the state-of-art privacy mechanisms applications in machine learning.
- Abstract(参考訳): ローカル微分プライバシ(LDP)の出現と進化と、その様々な適応は、クラウドセンシングの領域において、データインフォームドな意思決定に不可欠であるインテリジェントデバイスが生成する膨大な量のデータに関連するプライバシー問題に対処する上で、重要な役割を担っている。
これらの広範なデータセットを利用することは、重要な洞察を提供するだけでなく、関係する個人に対してかなりのプライバシー上の懸念をもたらす。
LDPは分散化されたフレームワークで有名だが、データ収集と処理の段階において、個々のユーザに対して強力なプライバシ保護を提供することに長けている。
LDPの中核的な原則は、サーバに送信される前に各ユーザのデータをクライアントの端でローカルに変更することで、両方のステージにおけるプライバシー侵害を防止することである。
ユーティリティとプライバシのトレードオフを改善することを目的とした、プライバシー研究コミュニティには、多くのDPのばらつきがある。
一方、プライバシ保護機構の主な応用の1つは機械学習である。
本稿では,まず LDP とその分散を包括的に分析し,それらのモデル,適用範囲の多様性,およびプライバシ機構の基盤となる構造に着目し,機械学習における最先端のプライバシ機構の適用について論じる。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - A Learning-based Declarative Privacy-Preserving Framework for Federated Data Management [23.847568516724937]
本稿では,DP-SGDアルゴリズムを用いて学習したディープラーニングモデルを用いた新たなプライバシ保存手法を提案する。
次に、ユーザが"保護する方法"ではなく、"保護すべきプライベート情報"を指定可能な、宣言的なプライバシ保護ワークフローを新たにデモします。
論文 参考訳(メタデータ) (2024-01-22T22:50:59Z) - Using Decentralized Aggregation for Federated Learning with Differential
Privacy [0.32985979395737774]
フェデレートラーニング(FL)は、データをローカルノードに保持することで、ある程度のプライバシーを提供する。
本研究は、ベンチマークデータセットを用いて、差分プライバシー(DP)を用いたFL実験環境をデプロイする。
論文 参考訳(メタデータ) (2023-11-27T17:02:56Z) - Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework [6.828884629694705]
本稿では,LLMのプライバシ生成モデルであるPrivChatGPTという概念モデルを提案する。
PrivChatGPTは、データキュレーション/前処理中にユーザのプライバシを保護し、プライベートコンテキストの保存と大規模データのプライベートトレーニングプロセスという2つの主要コンポーネントから構成される。
論文 参考訳(メタデータ) (2023-10-19T06:55:13Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - Production of Categorical Data Verifying Differential Privacy:
Conception and Applications to Machine Learning [0.0]
差別化プライバシは、プライバシとユーティリティのトレードオフの定量化を可能にする正式な定義である。
ローカルDP(LDP)モデルでは、ユーザはデータをサーバに送信する前に、ローカルにデータをサニタイズすることができる。
いずれの場合も、微分プライベートなMLモデルは、非プライベートなモデルとほぼ同じユーティリティメトリクスを達成できると結論付けました。
論文 参考訳(メタデータ) (2022-04-02T12:50:14Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。