A Training Rate and Survival Heuristic for Inference and Robustness Evaluation (TRASHFIRE)
- URL: http://arxiv.org/abs/2401.13751v2
- Date: Wed, 11 Sep 2024 20:55:32 GMT
- Title: A Training Rate and Survival Heuristic for Inference and Robustness Evaluation (TRASHFIRE)
- Authors: Charles Meyers, Mohammad Reza Saleh Sedghpour, Tommy Löfstedt, Erik Elmroth,
- Abstract summary: This work addresses the problem of understanding and predicting how particular model hyper- parameters influence the performance of a model in the presence of an adversary.
The proposed approach uses survival models, worst-case examples, and a cost-aware analysis to precisely and accurately reject a particular model change.
Using the proposed methodology, we show that ResNet is hopelessly against even the simplest of white box attacks.
- Score: 1.622320874892682
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning models -- deep neural networks in particular -- have performed remarkably well on benchmark datasets across a wide variety of domains. However, the ease of finding adversarial counter-examples remains a persistent problem when training times are measured in hours or days and the time needed to find a successful adversarial counter-example is measured in seconds. Much work has gone into generating and defending against these adversarial counter-examples, however the relative costs of attacks and defences are rarely discussed. Additionally, machine learning research is almost entirely guided by test/train metrics, but these would require billions of samples to meet industry standards. The present work addresses the problem of understanding and predicting how particular model hyper-parameters influence the performance of a model in the presence of an adversary. The proposed approach uses survival models, worst-case examples, and a cost-aware analysis to precisely and accurately reject a particular model change during routine model training procedures rather than relying on real-world deployment, expensive formal verification methods, or accurate simulations of very complicated systems (\textit{e.g.}, digitally recreating every part of a car or a plane). Through an evaluation of many pre-processing techniques, adversarial counter-examples, and neural network configurations, the conclusion is that deeper models do offer marginal gains in survival times compared to more shallow counterparts. However, we show that those gains are driven more by the model inference time than inherent robustness properties. Using the proposed methodology, we show that ResNet is hopelessly insecure against even the simplest of white box attacks.
Related papers
- A Cost-Aware Approach to Adversarial Robustness in Neural Networks [1.622320874892682]
We propose using accelerated failure time models to measure the effect of hardware choice, batch size, number of epochs, and test-set accuracy.
We evaluate several GPU types and use the Tree Parzen Estimator to maximize model robustness and minimize model run-time simultaneously.
arXiv Detail & Related papers (2024-09-11T20:43:59Z) - Robust Feature Inference: A Test-time Defense Strategy using Spectral Projections [12.807619042576018]
We propose a novel test-time defense strategy called Robust Feature Inference (RFI)
RFI is easy to integrate with any existing (robust) training procedure without additional test-time computation.
We show that RFI improves robustness across adaptive and transfer attacks consistently.
arXiv Detail & Related papers (2023-07-21T16:18:58Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
We show that adversarial examples can be successfully transferred to another independently trained model to induce prediction errors.
We propose a deep learning-based pre-processing mechanism, which we refer to as a robust transferable feature extractor (RTFE)
arXiv Detail & Related papers (2022-09-14T21:09:34Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - Self-Ensemble Adversarial Training for Improved Robustness [14.244311026737666]
Adversarial training is the strongest strategy against various adversarial attacks among all sorts of defense methods.
Recent works mainly focus on developing new loss functions or regularizers, attempting to find the unique optimal point in the weight space.
We devise a simple but powerful emphSelf-Ensemble Adversarial Training (SEAT) method for yielding a robust classifier by averaging weights of history models.
arXiv Detail & Related papers (2022-03-18T01:12:18Z) - A Frequency Perspective of Adversarial Robustness [72.48178241090149]
We present a frequency-based understanding of adversarial examples, supported by theoretical and empirical findings.
Our analysis shows that adversarial examples are neither in high-frequency nor in low-frequency components, but are simply dataset dependent.
We propose a frequency-based explanation for the commonly observed accuracy vs. robustness trade-off.
arXiv Detail & Related papers (2021-10-26T19:12:34Z) - Consistent Counterfactuals for Deep Models [25.1271020453651]
Counterfactual examples are used to explain predictions of machine learning models in key areas such as finance and medical diagnosis.
This paper studies the consistency of model prediction on counterfactual examples in deep networks under small changes to initial training conditions.
arXiv Detail & Related papers (2021-10-06T23:48:55Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
It is well established that neural networks are vulnerable to adversarial examples, which are almost imperceptible on human vision.
Existing defenses are trend to harden the robustness of models against adversarial attacks.
We propose a novel method combined with additional noises and utilize the inconsistency strategy to detect adversarial examples.
arXiv Detail & Related papers (2020-09-06T13:57:17Z) - Regularizers for Single-step Adversarial Training [49.65499307547198]
We propose three types of regularizers that help to learn robust models using single-step adversarial training methods.
Regularizers mitigate the effect of gradient masking by harnessing on properties that differentiate a robust model from that of a pseudo robust model.
arXiv Detail & Related papers (2020-02-03T09:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.