Robust Feature Inference: A Test-time Defense Strategy using Spectral Projections
- URL: http://arxiv.org/abs/2307.11672v2
- Date: Fri, 23 Aug 2024 07:54:39 GMT
- Title: Robust Feature Inference: A Test-time Defense Strategy using Spectral Projections
- Authors: Anurag Singh, Mahalakshmi Sabanayagam, Krikamol Muandet, Debarghya Ghoshdastidar,
- Abstract summary: We propose a novel test-time defense strategy called Robust Feature Inference (RFI)
RFI is easy to integrate with any existing (robust) training procedure without additional test-time computation.
We show that RFI improves robustness across adaptive and transfer attacks consistently.
- Score: 12.807619042576018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test-time defenses are used to improve the robustness of deep neural networks to adversarial examples during inference. However, existing methods either require an additional trained classifier to detect and correct the adversarial samples, or perform additional complex optimization on the model parameters or the input to adapt to the adversarial samples at test-time, resulting in a significant increase in the inference time compared to the base model. In this work, we propose a novel test-time defense strategy called Robust Feature Inference (RFI) that is easy to integrate with any existing (robust) training procedure without additional test-time computation. Based on the notion of robustness of features that we present, the key idea is to project the trained models to the most robust feature space, thereby reducing the vulnerability to adversarial attacks in non-robust directions. We theoretically characterize the subspace of the eigenspectrum of the feature covariance that is the most robust for a generalized additive model. Our extensive experiments on CIFAR-10, CIFAR-100, tiny ImageNet and ImageNet datasets for several robustness benchmarks, including the state-of-the-art methods in RobustBench show that RFI improves robustness across adaptive and transfer attacks consistently. We also compare RFI with adaptive test-time defenses to demonstrate the effectiveness of our proposed approach.
Related papers
- TAPT: Test-Time Adversarial Prompt Tuning for Robust Inference in Vision-Language Models [53.91006249339802]
We propose a novel defense method called Test-Time Adversarial Prompt Tuning (TAPT) to enhance the inference robustness of CLIP against visual adversarial attacks.
TAPT is a test-time defense method that learns defensive bimodal (textual and visual) prompts to robustify the inference process of CLIP.
We evaluate the effectiveness of TAPT on 11 benchmark datasets, including ImageNet and 10 other zero-shot datasets.
arXiv Detail & Related papers (2024-11-20T08:58:59Z) - MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - A Training Rate and Survival Heuristic for Inference and Robustness Evaluation (TRASHFIRE) [1.622320874892682]
This work addresses the problem of understanding and predicting how particular model hyper- parameters influence the performance of a model in the presence of an adversary.
The proposed approach uses survival models, worst-case examples, and a cost-aware analysis to precisely and accurately reject a particular model change.
Using the proposed methodology, we show that ResNet is hopelessly against even the simplest of white box attacks.
arXiv Detail & Related papers (2024-01-24T19:12:37Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Enhancing Adversarial Robustness via Score-Based Optimization [22.87882885963586]
Adversarial attacks have the potential to mislead deep neural network classifiers by introducing slight perturbations.
We introduce a novel adversarial defense scheme named ScoreOpt, which optimize adversarial samples at test-time.
Our experimental results demonstrate that our approach outperforms existing adversarial defenses in terms of both performance and robustness speed.
arXiv Detail & Related papers (2023-07-10T03:59:42Z) - Decorrelative Network Architecture for Robust Electrocardiogram
Classification [4.808817930937323]
It is not possible to train networks that are accurate in all scenarios.
Deep learning methods sample the model parameter space to estimate uncertainty.
These parameters are often subject to the same vulnerabilities, which can be exploited by adversarial attacks.
We propose a novel ensemble approach based on feature decorrelation and Fourier partitioning for teaching networks diverse complementary features.
arXiv Detail & Related papers (2022-07-19T02:36:36Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
Adversarial training (AT) is considered to be one of the most reliable defenses against adversarial attacks.
Recent works show generalization improvement with adversarial samples under novel threat models.
We propose a novel threat model called Joint Space Threat Model (JSTM)
Under JSTM, we develop novel adversarial attacks and defenses.
arXiv Detail & Related papers (2021-12-12T21:08:14Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.