論文の概要: Traffic Pattern Classification in Smart Cities Using Deep Recurrent
Neural Network
- arxiv url: http://arxiv.org/abs/2401.13794v1
- Date: Wed, 24 Jan 2024 20:24:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 16:21:14.071915
- Title: Traffic Pattern Classification in Smart Cities Using Deep Recurrent
Neural Network
- Title(参考訳): ディープリカレントニューラルネットワークを用いたスマートシティの交通パターン分類
- Authors: Ayad Ghany Ismaeel, Krishnadas Janardhanan, Manishankar Sankar,
Yuvaraj Natarajan, Sarmad Nozad Mahmood, Sameer Alani, and Akram H. Shather
- Abstract要約: 本稿では,ディープリカレントニューラルネットワークに基づく交通パターン分類手法を提案する。
提案モデルでは、畳み込み層と繰り返し層を組み合わせて、トラフィックパターンデータから特徴を抽出する。
その結果,提案モデルは,95%の精度でスマートシティの交通パターンを正確に分類できることがわかった。
- 参考スコア(独自算出の注目度): 0.519400993594577
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper examines the use of deep recurrent neural networks to classify
traffic patterns in smart cities. We propose a novel approach to traffic
pattern classification based on deep recurrent neural networks, which can
effectively capture traffic patterns' dynamic and sequential features. The
proposed model combines convolutional and recurrent layers to extract features
from traffic pattern data and a SoftMax layer to classify traffic patterns.
Experimental results show that the proposed model outperforms existing methods
regarding accuracy, precision, recall, and F1 score. Furthermore, we provide an
in depth analysis of the results and discuss the implications of the proposed
model for smart cities. The results show that the proposed model can accurately
classify traffic patterns in smart cities with a precision of as high as 95%.
The proposed model is evaluated on a real world traffic pattern dataset and
compared with existing classification methods.
- Abstract(参考訳): 本稿では,スマートシティにおける交通パターンの分類にディープリカレントニューラルネットワークを用いることを検討した。
本稿では,トラフィックパターンの動的・逐次的特徴を効果的に捉えた,ディープリカレントニューラルネットワークに基づくトラヒックパターン分類手法を提案する。
提案モデルでは、畳み込み層と繰り返し層を組み合わせて、トラフィックパターンデータとSoftMax層から特徴を抽出し、トラフィックパターンを分類する。
実験結果から,提案手法は精度,精度,リコール,F1スコアなどの既存手法よりも優れていた。
さらに,調査結果の奥行き解析を行い,提案モデルがスマートシティに与える影響について考察する。
その結果,提案モデルは,95%の精度でスマートシティの交通パターンを正確に分類できることがわかった。
提案モデルを実世界トラフィックパターンデータセット上で評価し,既存の分類法と比較した。
関連論文リスト
- A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
本研究では,交差点での移動予測を回転させる多グラフ畳み込みニューラルネットワーク(MGCNN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案アーキテクチャは,トラフィックデータの時間変動をモデル化する多グラフ構造と,グラフ上のトラフィックデータの空間変動をモデル化するためのスペクトル畳み込み演算を組み合わせた。
モデルが1, 2, 3, 4, 5分後に短期予測を行う能力は,4つのベースライン・オブ・ザ・アーティファクトモデルに対して評価された。
論文 参考訳(メタデータ) (2024-06-02T05:41:25Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - Dynamic Causal Graph Convolutional Network for Traffic Prediction [19.759695727682935]
本稿では,時間変動動的ネットワークを組み込んだトラフィック予測手法を提案する。
次に、グラフ畳み込みネットワークを使用してトラフィック予測を生成します。
実交通データを用いた実験結果から,提案手法の予測性能が優れていることを示す。
論文 参考訳(メタデータ) (2023-06-12T10:46:31Z) - Attention-based Spatial-Temporal Graph Neural ODE for Traffic Prediction [3.4806267677524896]
本稿では,交通システムの力学を明示的に学習するアテンションベースグラフニューラルODE(AST)を提案する。
本モデルでは,異なる期間のトラフィックパターンを集約し,実世界の2つのトラフィックデータセットに対して良好な性能を示す。
論文 参考訳(メタデータ) (2023-05-01T00:58:48Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
運転行動認識のための軌道情報に基づくニューラルネットワークモデルを提案する。
提案手法を公開BLVDデータセット上で評価し,満足な性能を実現する。
論文 参考訳(メタデータ) (2021-03-01T06:47:29Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
本論文では,記憶神経ネットワークと呼ばれる新しい繰り返しニューラルネットワークを用いて,時空間的視線軌道予測の問題を解くことを試みる。
提案手法は計算量が少なく,LSTMやGRUを用いた他のディープラーニングモデルと比較すると,単純なアーキテクチャである。
論文 参考訳(メタデータ) (2021-02-24T05:02:19Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Traffic Data Imputation using Deep Convolutional Neural Networks [2.7647400328727256]
我々は、よく訓練されたニューラルネットワークが、時間空間図から交通速度のダイナミクスを学習できることを示します。
提案手法は, 車両の侵入プローブレベルを5%以下に抑えることで, マクロな交通速度を再現できることを示す。
論文 参考訳(メタデータ) (2020-01-21T12:52:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。