論文の概要: PADTHAI-MM: A Principled Approach for Designing Trustable,
Human-centered AI systems using the MAST Methodology
- arxiv url: http://arxiv.org/abs/2401.13850v1
- Date: Wed, 24 Jan 2024 23:15:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 16:12:16.956278
- Title: PADTHAI-MM: A Principled Approach for Designing Trustable,
Human-centered AI systems using the MAST Methodology
- Title(参考訳): PADTHAI-MM:MAST手法を用いた信頼性・人間中心型AIシステム設計のための原則的アプローチ
- Authors: Nayoung Kim, Myke C. Cohen, Yang Ba, Anna Pan, Shawaiz Bhatti, Pouria
Salehi, James Sung, Erik Blasch, Michelle V. Mancenido, Erin K. Chiou
- Abstract要約: チェックリスト評価システムであるMultisource AI Scorecard Table (MAST)は、AI対応意思決定支援システムの設計と評価におけるこのギャップに対処する。
我々は,MAST手法を用いた信頼性の高い人間中心型AIシステムを設計するための原則的アプローチを提案する。
我々は,MAST誘導設計により信頼感が向上し,MAST基準が性能,プロセス,目的情報と結びつくことを示す。
- 参考スコア(独自算出の注目度): 5.38932801848643
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing for AI trustworthiness is challenging, with a lack of practical
guidance despite extensive literature on trust. The Multisource AI Scorecard
Table (MAST), a checklist rating system, addresses this gap in designing and
evaluating AI-enabled decision support systems. We propose the Principled
Approach for Designing Trustable Human-centered AI systems using MAST
Methodology (PADTHAI-MM), a nine-step framework what we demonstrate through the
iterative design of a text analysis platform called the REporting Assistant for
Defense and Intelligence Tasks (READIT). We designed two versions of READIT,
high-MAST including AI context and explanations, and low-MAST resembling a
"black box" type system. Participant feedback and state-of-the-art AI knowledge
was integrated in the design process, leading to a redesigned prototype tested
by participants in an intelligence reporting task. Results show that
MAST-guided design can improve trust perceptions, and that MAST criteria can be
linked to performance, process, and purpose information, providing a practical
and theory-informed basis for AI system design.
- Abstract(参考訳): AIの信頼性設計は、信頼に関する広範な文献にもかかわらず、実践的なガイダンスが欠如しているため、難しい。
チェックリスト評価システムであるMultisource AI Scorecard Table (MAST)は、AI対応意思決定支援システムの設計と評価におけるこのギャップに対処する。
MAST法(PADTHAI-MM)を用いた信頼可能な人間中心型AIシステムを設計するための原則的アプローチを提案する。このフレームワークは、Reporting Assistant for Defense and Intelligence Tasks (READIT)と呼ばれるテキスト分析プラットフォームの反復設計を通じて、実証する9段階のフレームワークである。
我々はREADITの2つのバージョンを設計し、AIコンテキストや説明を含む高MASTと、ブラックボックス型システムに似た低MASTを設計した。
参加者のフィードバックと最先端のai知識が設計プロセスに統合され、インテリジェンス報告タスクの参加者によってテストされたプロトタイプが再設計された。
その結果、マストガイド設計は信頼度を向上し、マスト基準はパフォーマンス、プロセス、目的情報に関連付けることができ、aiシステム設計の実用的かつ理論的な基礎を提供する。
関連論文リスト
- Found in Translation: semantic approaches for enhancing AI interpretability in face verification [0.4222205362654437]
本研究は,XAIフレームワークに意味概念を統合することで,モデル出力と人間の理解の包括的ギャップを埋めることにより,これまでの研究を拡張した。
ユーザが選択した顔のランドマークによって定義された意味的特徴を用いて,グローバルな説明とローカルな説明を組み合わせた新しいアプローチを提案する。
結果は、セマンティックベースのアプローチ、特に最も詳細なセットは、従来の手法よりも、モデル決定をよりきめ細やかな理解を提供することを示している。
論文 参考訳(メタデータ) (2025-01-06T08:34:53Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Trustworthy Artificial Intelligence in the Context of Metrology [3.2873782624127834]
我々は、信頼できる人工知能(TAI)分野の国立物理研究所での研究をレビューする。
技術的,社会技術的,社会的の3つのテーマについて述べる。これは,開発モデルが信頼性が高く,責任ある決定を下す上で重要な役割を担っている。
NPLで取り組んでいるTAI内の3つの研究領域について論じ、AIシステムの認証について、TAIの特徴の遵守の観点から検討する。
論文 参考訳(メタデータ) (2024-06-14T15:23:27Z) - An In-depth Survey of Large Language Model-based Artificial Intelligence
Agents [11.774961923192478]
LLMベースのAIエージェントと従来のAIエージェントの主な違いと特徴について検討した。
我々は、計画、記憶、ツール使用を含むAIエージェントの重要なコンポーネントについて、詳細な分析を行った。
論文 参考訳(メタデータ) (2023-09-23T11:25:45Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
トラフィック領域における状況推論のための3つの新しいテキストベースのタスクを考案する。
先行作業における言語推論タスクにまたがる一般化能力を示す知識強化手法を4つ採用する。
本稿では,データ分割におけるモデル性能の詳細な解析を行い,モデル予測を分類的に検討する。
論文 参考訳(メタデータ) (2023-06-05T01:01:12Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - A Comparative Approach to Explainable Artificial Intelligence Methods in
Application to High-Dimensional Electronic Health Records: Examining the
Usability of XAI [0.0]
XAIは、コミュニケーション手段によって人間に達成される信頼の実証的要因を生み出すことを目的としている。
機械を信頼して人間の生き方に向くというイデオロギーは倫理的な混乱を引き起こします。
XAIメソッドは、ローカルレベルとグローバルレベルの両方で出力される特定のモデルに対する機能貢献を視覚化します。
論文 参考訳(メタデータ) (2021-03-08T18:15:52Z) - Multisource AI Scorecard Table for System Evaluation [3.74397577716445]
本稿では、AI/機械学習(ML)システムの開発者およびユーザに対して標準チェックリストを提供するマルチソースAIスコアカードテーブル(MAST)について述べる。
本稿では,インテリジェンス・コミュニティ・ディレクティブ(ICD)203で概説されている分析的トレードクラフト標準が,AIシステムの性能を評価するためのフレームワークを提供する方法について考察する。
論文 参考訳(メタデータ) (2021-02-08T03:37:40Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。