論文の概要: Combining AI Control Systems and Human Decision Support via Robustness and Criticality
- arxiv url: http://arxiv.org/abs/2407.03210v2
- Date: Wed, 09 Oct 2024 02:16:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:30:43.739414
- Title: Combining AI Control Systems and Human Decision Support via Robustness and Criticality
- Title(参考訳): ロバスト性と臨界性によるAI制御システムと人的意思決定支援の組み合わせ
- Authors: Walt Woods, Alexander Grushin, Simon Khan, Alvaro Velasquez,
- Abstract要約: 我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
- 参考スコア(独自算出の注目度): 53.10194953873209
- License:
- Abstract: AI-enabled capabilities are reaching the requisite level of maturity to be deployed in the real world, yet do not always make correct or safe decisions. One way of addressing these concerns is to leverage AI control systems alongside and in support of human decisions, relying on the AI control system in safe situations while calling on a human co-decider for critical situations. We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks, including MuZero. Multiple improvements to the base agent architecture are proposed. We demonstrate how this technology has two applications: for intelligent decision tools and to enhance training / learning frameworks. In a decision support context, adversarial explanations help a user make the correct decision by highlighting those contextual factors that would need to change for a different AI-recommended decision. As another benefit of adversarial explanations, we show that the learned AI control system demonstrates robustness against adversarial tampering. Additionally, we supplement AE by introducing strategically similar autoencoders (SSAs) to help users identify and understand all salient factors being considered by the AI system. In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction. Finally, to identify when AI decisions would most benefit from human oversight, we tie this combined system to our prior art on statistically verified analyses of the criticality of decisions at any point in time.
- Abstract(参考訳): AI対応の能力は、現実世界にデプロイされるために必要な成熟度レベルに達していますが、必ずしも正しいあるいは安全な決定を下すとは限らないのです。
これらの懸念に対処する1つの方法は、人間の決定と並行してAI制御システムを活用することであり、安全状況においてAI制御システムに依存し、重要な状況に対して人間の共同決定者を呼び出すことである。
逆説法(AE)を,MuZeroを含む最先端の強化学習フレームワークに拡張する。
基本エージェントアーキテクチャの複数の改良が提案されている。
この技術は、インテリジェントな意思決定ツールと、トレーニング/学習フレームワークの強化という、2つの応用を実証しています。
意思決定支援のコンテキストでは、AIが推奨する異なる決定のために変更する必要があるこれらのコンテキスト要因を強調することで、ユーザが正しい判断を下すのに役立つ。
敵対的説明のもう1つの利点として、学習したAI制御システムが敵のタンパリングに対する堅牢性を示すことを示す。
さらに、戦略的に類似したオートエンコーダ(SSA)を導入してAEを補完し、AIシステムで考慮されているすべての健全な要因を特定し、理解するのに役立つ。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
最後に、AI決定が人間の監視から最も恩恵を受けるかを特定するために、任意の時点における決定の臨界度に関する統計的に検証された分析に基づいて、この組み合わせされたシステムを我々の先行技術と結びつけます。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
AIによる意思決定において、人間はしばしばAIの提案を受動的にレビューし、それを受け入れるか拒否するかを決定する。
意思決定における人間-AIの意見の対立に関する議論と人間のリフレクションを促進する新しい枠組みであるHuman-AI Deliberationを提案する。
人間の熟考の理論に基づいて、この枠組みは人間とAIを次元レベルの意見の引用、熟考的議論、意思決定の更新に携わる。
論文 参考訳(メタデータ) (2024-03-25T14:34:06Z) - Decoding AI's Nudge: A Unified Framework to Predict Human Behavior in
AI-assisted Decision Making [24.258056813524167]
本稿では,AI支援の様々な形態が意思決定者に与える影響を解釈できる計算フレームワークを提案する。
人間の意思決定プロセスにおけるAIアシストを「エマード」として概念化することで、私たちのアプローチは、異なる形のAIアシストが人間の戦略をどのように修正するかをモデル化することに集中します。
論文 参考訳(メタデータ) (2024-01-11T11:22:36Z) - Trustworthy AI: Deciding What to Decide [41.10597843436572]
我々は,AIの重要なコンポーネントを含む,信頼に値するAI(TAI)の新しいフレームワークを提案する。
我々は,この枠組みを用いて,定量的および定性的な研究手法によるTAI実験を実施することを目指している。
技術分野における信用デフォルトスワップ(CDS)の戦略的投資決定を適用するための最適予測モデルを定式化する。
論文 参考訳(メタデータ) (2023-11-21T13:43:58Z) - Training Towards Critical Use: Learning to Situate AI Predictions
Relative to Human Knowledge [22.21959942886099]
我々は、人間がAIモデルでは利用できない知識に対してAI予測をシチュレートする能力を集中させる「クリティカルユース」と呼ばれるプロセス指向の適切な依存の概念を紹介します。
我々は、児童虐待スクリーニングという複雑な社会的意思決定環境でランダム化オンライン実験を行う。
参加者にAIによる意思決定を実践する、迅速で低い機会を提供することによって、初心者は、経験豊富な労働者に類似したAIとの不一致のパターンを示すようになった。
論文 参考訳(メタデータ) (2023-08-30T01:54:31Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - The human-AI relationship in decision-making: AI explanation to support
people on justifying their decisions [4.169915659794568]
人々は、AIがどのように機能するか、そしてそのシステムとの関係を構築するために、その成果をもっと意識する必要があります。
意思決定のシナリオでは、人々はAIがどのように機能するか、そしてそのシステムとの関係を構築する結果についてもっと意識する必要があります。
論文 参考訳(メタデータ) (2021-02-10T14:28:34Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。