論文の概要: PADTHAI-MM: Principles-based Approach for Designing Trustworthy, Human-centered AI using MAST Methodology
- arxiv url: http://arxiv.org/abs/2401.13850v2
- Date: Wed, 22 Jan 2025 20:52:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-25 03:58:51.872768
- Title: PADTHAI-MM: Principles-based Approach for Designing Trustworthy, Human-centered AI using MAST Methodology
- Title(参考訳): PADTHAI-MM:MAST法を用いた信頼できる人間中心AI設計のための原理に基づくアプローチ
- Authors: Myke C. Cohen, Nayoung Kim, Yang Ba, Anna Pan, Shawaiz Bhatti, Pouria Salehi, James Sung, Erik Blasch, Michelle V. Mancenido, Erin K. Chiou,
- Abstract要約: マルチソースAIスコアカードテーブル(Multisource AI Scorecard Table, MAST)は、AI対応意思決定支援システムを評価するための、体系的かつトレードクラフト中心のアプローチを提供することによって、ギャップを埋めるように設計されている。
我々は,信頼に値する,人間中心のAIを設計するためのテキスト原則に基づくアプローチという,反復的な設計フレームワークを導入する。
我々はこの枠組みを防衛情報タスク報告支援(READIT)の開発において実証する。
- 参考スコア(独自算出の注目度): 5.215782336985273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite an extensive body of literature on trust in technology, designing trustworthy AI systems for high-stakes decision domains remains a significant challenge, further compounded by the lack of actionable design and evaluation tools. The Multisource AI Scorecard Table (MAST) was designed to bridge this gap by offering a systematic, tradecraft-centered approach to evaluating AI-enabled decision support systems. Expanding on MAST, we introduce an iterative design framework called \textit{Principles-based Approach for Designing Trustworthy, Human-centered AI using MAST Methodology} (PADTHAI-MM). We demonstrate this framework in our development of the Reporting Assistant for Defense and Intelligence Tasks (READIT), a research platform that leverages data visualizations and natural language processing-based text analysis, emulating an AI-enabled system supporting intelligence reporting work. To empirically assess the efficacy of MAST on trust in AI, we developed two distinct iterations of READIT for comparison: a High-MAST version, which incorporates AI contextual information and explanations, and a Low-MAST version, akin to a ``black box'' system. This iterative design process, guided by stakeholder feedback and contemporary AI architectures, culminated in a prototype that was evaluated through its use in an intelligence reporting task. We further discuss the potential benefits of employing the MAST-inspired design framework to address context-specific needs. We also explore the relationship between stakeholder evaluators' MAST ratings and three categories of information known to impact trust: \textit{process}, \textit{purpose}, and \textit{performance}. Overall, our study supports the practical benefits and theoretical validity for PADTHAI-MM as a viable method for designing trustable, context-specific AI systems.
- Abstract(参考訳): テクノロジーへの信頼に関する膨大な文献があるにもかかわらず、高度な意思決定領域のための信頼できるAIシステムを設計することは依然として大きな課題であり、実用的な設計と評価ツールの欠如によってさらに複雑化されている。
マルチソースAIスコアカードテーブル(Multisource AI Scorecard Table, MAST)は、AI対応意思決定支援システムを評価するための、体系的かつトレードクラフト中心のアプローチを提供することによって、このギャップを埋めるように設計されている。
MASTを拡張して,MAST法(PADTHAI-MM)を用いた信頼に値する,人間中心のAIを設計するための,‘textit{Principles-based Approach for Designing Trustworthy, Human-centered AI’(PADTHAI-MM)という反復的設計フレームワークを導入する。
データ視覚化と自然言語処理に基づくテキスト分析を活用する研究プラットフォームであるReporting Assistant for Defense and Intelligence Tasks (READIT)の開発において,このフレームワークを実証した。
我々は,AIの信頼性に対するMASTの有効性を実証的に評価するために,AIの文脈情報と説明を組み込んだ高MASTバージョンと,‘ブラックボックス’システムに似た低MASTバージョンという,READITの2つの異なるイテレーションを開発した。
この反復的な設計プロセスは、利害関係者のフィードバックと現代のAIアーキテクチャによって導かれ、インテリジェンスレポートタスクでその使用によって評価されたプロトタイプで完了した。
さらに、コンテキスト固有のニーズに対処するために、MASTにインスパイアされたデザインフレームワークを使うことの潜在的な利点について論じる。
また、利害関係者のMAST評価と、信頼に影響を与えることが知られている情報の3つのカテゴリ: \textit{process}, \textit{purpose}, \textit{ Performance} との関係についても検討する。
本研究は,信頼性の高いコンテキスト依存型AIシステムの設計手法として,PADTHAI-MMの実用的メリットと理論的妥当性を支持する。
関連論文リスト
- A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - Found in Translation: semantic approaches for enhancing AI interpretability in face verification [0.4222205362654437]
本研究は,XAIフレームワークに意味概念を統合することで,モデル出力と人間の理解の包括的ギャップを埋めることにより,これまでの研究を拡張した。
ユーザが選択した顔のランドマークによって定義された意味的特徴を用いて,グローバルな説明とローカルな説明を組み合わせた新しいアプローチを提案する。
結果は、セマンティックベースのアプローチ、特に最も詳細なセットは、従来の手法よりも、モデル決定をよりきめ細やかな理解を提供することを示している。
論文 参考訳(メタデータ) (2025-01-06T08:34:53Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Trustworthy Artificial Intelligence in the Context of Metrology [3.2873782624127834]
我々は、信頼できる人工知能(TAI)分野の国立物理研究所での研究をレビューする。
技術的,社会技術的,社会的の3つのテーマについて述べる。これは,開発モデルが信頼性が高く,責任ある決定を下す上で重要な役割を担っている。
NPLで取り組んでいるTAI内の3つの研究領域について論じ、AIシステムの認証について、TAIの特徴の遵守の観点から検討する。
論文 参考訳(メタデータ) (2024-06-14T15:23:27Z) - The AI-DEC: A Card-based Design Method for User-centered AI Explanations [20.658833770179903]
我々は,AIの説明の4次元を定義する設計手法であるAI-DECを開発した。
我々は、医療、金融、マネジメント産業の労働者との共同設計セッションを通じて、この手法を評価する。
実世界のシステムにおけるAI説明のユーザ中心設計におけるAI-DECの利用の意味について論じる。
論文 参考訳(メタデータ) (2024-05-26T22:18:38Z) - Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review [12.38351931894004]
本稿では,安全かつ信頼性の高い自動運転のための説明可能な手法に関する,最初の体系的な文献レビューを紹介する。
我々は、ADにおける安全で信頼性の高いAIに対するXAIの5つの重要な貢献を特定し、それらは解釈可能な設計、解釈可能な代理モデル、解釈可能なモニタリング、補助的な説明、解釈可能な検証である。
我々は、これらのコントリビューションを統合するためにSafeXと呼ばれるモジュラーフレームワークを提案し、同時にAIモデルの安全性を確保しながら、ユーザへの説明提供を可能にした。
論文 参考訳(メタデータ) (2024-02-08T09:08:44Z) - Evaluating Trustworthiness of AI-Enabled Decision Support Systems:
Validation of the Multisource AI Scorecard Table (MAST) [10.983659980278926]
Multisource AI Scorecard Table (MAST)は、信頼できるAIシステムの設計と評価を通知するチェックリストツールである。
我々は、AI対応意思決定支援システムにおいて、MASTが人々の信頼感と関連しているかどうかを評価する。
論文 参考訳(メタデータ) (2023-11-29T19:34:15Z) - An In-depth Survey of Large Language Model-based Artificial Intelligence
Agents [11.774961923192478]
LLMベースのAIエージェントと従来のAIエージェントの主な違いと特徴について検討した。
我々は、計画、記憶、ツール使用を含むAIエージェントの重要なコンポーネントについて、詳細な分析を行った。
論文 参考訳(メタデータ) (2023-09-23T11:25:45Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
トラフィック領域における状況推論のための3つの新しいテキストベースのタスクを考案する。
先行作業における言語推論タスクにまたがる一般化能力を示す知識強化手法を4つ採用する。
本稿では,データ分割におけるモデル性能の詳細な解析を行い,モデル予測を分類的に検討する。
論文 参考訳(メタデータ) (2023-06-05T01:01:12Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Certifiable Artificial Intelligence Through Data Fusion [7.103626867766158]
本稿では,人工知能(AI)システムの採用,フィールド化,保守に関する課題をレビューし,提案する。
画像データ融合により、精度対距離を考慮したAI物体認識精度を支援する。
論文 参考訳(メタデータ) (2021-11-03T03:34:19Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - A Comparative Approach to Explainable Artificial Intelligence Methods in
Application to High-Dimensional Electronic Health Records: Examining the
Usability of XAI [0.0]
XAIは、コミュニケーション手段によって人間に達成される信頼の実証的要因を生み出すことを目的としている。
機械を信頼して人間の生き方に向くというイデオロギーは倫理的な混乱を引き起こします。
XAIメソッドは、ローカルレベルとグローバルレベルの両方で出力される特定のモデルに対する機能貢献を視覚化します。
論文 参考訳(メタデータ) (2021-03-08T18:15:52Z) - Multisource AI Scorecard Table for System Evaluation [3.74397577716445]
本稿では、AI/機械学習(ML)システムの開発者およびユーザに対して標準チェックリストを提供するマルチソースAIスコアカードテーブル(MAST)について述べる。
本稿では,インテリジェンス・コミュニティ・ディレクティブ(ICD)203で概説されている分析的トレードクラフト標準が,AIシステムの性能を評価するためのフレームワークを提供する方法について考察する。
論文 参考訳(メタデータ) (2021-02-08T03:37:40Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。