Graph Diffusion Transformers for Multi-Conditional Molecular Generation
- URL: http://arxiv.org/abs/2401.13858v3
- Date: Thu, 03 Oct 2024 16:29:02 GMT
- Title: Graph Diffusion Transformers for Multi-Conditional Molecular Generation
- Authors: Gang Liu, Jiaxin Xu, Tengfei Luo, Meng Jiang,
- Abstract summary: We present the Graph Diffusion Transformer (Graph DiT) for multi-conditional molecular generation.
Graph DiT integrates an encoder to learn numerical and categorical property representations with the Transformer-based denoiser.
Results demonstrate the superiority of Graph DiT across nine metrics from distribution learning to condition control for molecular properties.
- Score: 16.58392955245203
- License:
- Abstract: Inverse molecular design with diffusion models holds great potential for advancements in material and drug discovery. Despite success in unconditional molecular generation, integrating multiple properties such as synthetic score and gas permeability as condition constraints into diffusion models remains unexplored. We present the Graph Diffusion Transformer (Graph DiT) for multi-conditional molecular generation. Graph DiT integrates an encoder to learn numerical and categorical property representations with the Transformer-based denoiser. Unlike previous graph diffusion models that add noise separately on the atoms and bonds in the forward diffusion process, Graph DiT is trained with a novel graph-dependent noise model for accurate estimation of graph-related noise in molecules. We extensively validate Graph DiT for multi-conditional polymer and small molecule generation. Results demonstrate the superiority of Graph DiT across nine metrics from distribution learning to condition control for molecular properties. A polymer inverse design task for gas separation with feedback from domain experts further demonstrates its practical utility.
Related papers
- Advancing Graph Generation through Beta Diffusion [49.49740940068255]
Graph Beta Diffusion (GBD) is a generative model specifically designed to handle the diverse nature of graph data.
We propose a modulation technique that enhances the realism of generated graphs by stabilizing critical graph topology.
arXiv Detail & Related papers (2024-06-13T17:42:57Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
We show how graph diffusion equations extrapolate and generalize in the presence of varying graph topologies.
We propose a novel graph encoder backbone, Advective Diffusion Transformer (ADiT), inspired by advective graph diffusion equations.
arXiv Detail & Related papers (2023-10-10T08:40:47Z) - Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation [32.66694406638287]
We propose a new joint 2D and 3D diffusion model (JODO) that generates molecules with atom types, formal charges, bond information, and 3D coordinates.
Our model can also be extended for inverse molecular design targeting single or multiple quantum properties.
arXiv Detail & Related papers (2023-05-21T04:49:53Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Conditional Diffusion Based on Discrete Graph Structures for Molecular
Graph Generation [32.66694406638287]
We propose a Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation.
Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through differential equations (SDE)
We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states.
arXiv Detail & Related papers (2023-01-01T15:24:15Z) - DiGress: Discrete Denoising diffusion for graph generation [79.13904438217592]
DiGress is a discrete denoising diffusion model for generating graphs with categorical node and edge attributes.
It achieves state-of-the-art performance on molecular and non-molecular datasets, with up to 3x validity improvement.
It is also the first model to scale to the large GuacaMol dataset containing 1.3M drug-like molecules.
arXiv Detail & Related papers (2022-09-29T12:55:03Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
We propose a novel generative model named GeoDiff for molecular conformation prediction.
We show that GeoDiff is superior or comparable to existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-06T09:47:01Z) - Interpretable Molecular Graph Generation via Monotonic Constraints [19.401468196146336]
Deep graph generative models treat molecule design as graph generation problems.
Existing models have many shortcomings, including poor interpretability and controllability toward desired molecular properties.
This paper proposes new methodologies for molecule generation with interpretable and deep controllable models.
arXiv Detail & Related papers (2022-02-28T08:35:56Z) - Learning Attributed Graph Representations with Communicative Message
Passing Transformer [3.812358821429274]
We propose a Communicative Message Passing Transformer (CoMPT) neural network to improve the molecular graph representation.
Unlike the previous transformer-style GNNs that treat molecules as fully connected graphs, we introduce a message diffusion mechanism to leverage the graph connectivity inductive bias.
arXiv Detail & Related papers (2021-07-19T11:58:32Z) - A Graph VAE and Graph Transformer Approach to Generating Molecular
Graphs [1.6631602844999724]
We propose a variational autoencoder and a transformer based model which fully utilise graph convolutional and graph pooling layers.
The transformer model implements a novel node encoding layer, replacing the position encoding typically used in transformers, to create a transformer with no position information that operates on graphs.
In experiments we chose a benchmark task of molecular generation, given the importance of both generated node and edge features.
arXiv Detail & Related papers (2021-04-09T13:13:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.