論文の概要: Randomized Response with Gradual Release of Privacy Budget
- arxiv url: http://arxiv.org/abs/2401.13952v1
- Date: Thu, 25 Jan 2024 05:18:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 08:17:26.326429
- Title: Randomized Response with Gradual Release of Privacy Budget
- Title(参考訳): プライバシー予算の段階的リリースによるランダム化応答
- Authors: Mingen Pan,
- Abstract要約: ランダム化応答の差分プライバシー(DP)保証を徐々に緩和するアルゴリズムを開発した。
各緩和からの出力は、標準ランダム化応答と同じ確率分布を保持する。
緩和プロセス全体は、最新の緩和保証と同じDP保証を持つことが証明されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: An algorithm is developed to gradually relax the Differential Privacy (DP) guarantee of a randomized response. The output from each relaxation maintains the same probability distribution as a standard randomized response with the equivalent DP guarantee, ensuring identical utility as the standard approach. The entire relaxation process is proven to have the same DP guarantee as the most recent relaxed guarantee. The DP relaxation algorithm is adaptable to any Local Differential Privacy (LDP) mechanisms relying on randomized response. It has been seamlessly integrated into RAPPOR, an LDP crowdsourcing string-collecting tool, to optimize the utility of estimating the frequency of collected data. Additionally, it facilitates the relaxation of the DP guarantee for mean estimation based on randomized response. Finally, numerical experiments have been conducted to validate the utility and DP guarantee of the algorithm.
- Abstract(参考訳): ランダム化応答の差分プライバシー(DP)保証を徐々に緩和するアルゴリズムを開発した。
各緩和からの出力は、同等のDP保証とともに標準ランダム化応答と同じ確率分布を保持し、標準アプローチと同じ実用性を保証する。
緩和プロセス全体は、最新の緩和保証と同じDP保証を持つことが証明されている。
DP緩和アルゴリズムは、ランダムな応答に依存する任意のローカル微分プライバシー(LDP)メカニズムに適応可能である。
LDPクラウドソーシング文字列収集ツールであるRAPPORにシームレスに統合され、収集されたデータの頻度を推定するユーティリティを最適化した。
さらに、ランダム化応答に基づく平均推定に対するDP保証の緩和を容易にする。
最後に,提案アルゴリズムの有効性とDP保証を検証する数値実験を行った。
関連論文リスト
- Adaptive Online Bayesian Estimation of Frequency Distributions with Local Differential Privacy [0.4604003661048266]
本稿では, 局所微分プライバシー(LDP)フレームワークを用いて, 有限個のカテゴリの周波数分布を適応的かつオンラインに推定する手法を提案する。
提案アルゴリズムは, 後方サンプリングによるベイズパラメータ推定を行い, 得られた後方サンプルに基づいて, LDPのランダム化機構を適用する。
提案手法は, (i) アルゴリズムがターゲットとする後続分布が近似した後続サンプリングであっても真のパラメータに収束し, (ii) アルゴリズムが後続サンプリングを正確に行えば高い確率で最適サブセットを選択することを示す理論解析である。
論文 参考訳(メタデータ) (2024-05-11T13:59:52Z) - Noise Variance Optimization in Differential Privacy: A Game-Theoretic Approach Through Per-Instance Differential Privacy [7.264378254137811]
差分プライバシー(DP)は、個人をターゲットデータセットに含めることによる分布の変化を観察することにより、プライバシー損失を測定することができる。
DPは、AppleやGoogleのような業界巨人の機械学習におけるデータセットの保護において際立っている。
本稿では,PDPを制約として提案し,各データインスタンスのプライバシ損失を測定し,個々のインスタンスに適したノイズを最適化する。
論文 参考訳(メタデータ) (2024-04-24T06:51:16Z) - Mitigating LLM Hallucinations via Conformal Abstention [70.83870602967625]
我々は,大言語モデルが一般ドメインでの応答をいつ無視すべきかを決定するための,原則化された手順を開発する。
我々は、幻覚率(エラー率)の厳密な理論的保証の恩恵を受けるため、共形予測手法を活用して、禁忌手順を開発する。
実験によって得られた共形禁忌法は, 種々の閉書, オープンドメイン生成質問応答データセットに, 幻覚率を確実に拘束する。
論文 参考訳(メタデータ) (2024-04-04T11:32:03Z) - Regression with Label Differential Privacy [64.21020761920322]
与えられた回帰損失関数の下で最適なラベルDPランダム化機構を導出する。
我々は、最適メカニズムが「ビンのランダム化応答」の形をとることを証明した。
論文 参考訳(メタデータ) (2022-12-12T17:41:32Z) - Differentially Private Learning with Margin Guarantees [48.83724068578305]
我々は,次元非依存のマージン保証を備えた新しい差分プライベート(DP)アルゴリズムを提案する。
線形仮説の族に対しては、相対的な偏差マージン保証の恩恵を受ける純粋DP学習アルゴリズムを提供する。
また,カーネルベースの仮説に対するマージン保証を備えたDP学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-21T19:12:06Z) - Nonparametric extensions of randomized response for private confidence sets [51.75485869914048]
本研究は,局所的差分プライバシー(LDP)の制約の下で,集団平均の非パラメトリック,非漸近的統計的推測を行う手法を導出する。
民営化データへのアクセスのみを与えられた場合、$mustar$に対して信頼区間(CI)と時間一様信頼シーケンス(CS)を提示する。
論文 参考訳(メタデータ) (2022-02-17T16:04:49Z) - Private Robust Estimation by Stabilizing Convex Relaxations [22.513117502159922]
$(epsilon, delta)$-differentially private (DP)
$(epsilon, delta)$-differentially private (DP)
$(epsilon, delta)$-differentially private (DP)
論文 参考訳(メタデータ) (2021-12-07T07:47:37Z) - On the Renyi Differential Privacy of the Shuffle Model [25.052851351062845]
シャッフルモデルでは、各$n$クライアントはローカル差分プライベート(LDP)メカニズムを使用してレスポンスをランダム化し、信頼できないサーバは各クライアントに関連付けることなくクライアントレスポンスのランダムな置換(シャッフル)のみを受け取ります。
本稿では,シャッフルドプライバシモデルにおける一般離散局所ランダム化機構に対する最初の非自明な保証について述べる。
論文 参考訳(メタデータ) (2021-05-11T16:34:09Z) - Improved, Deterministic Smoothing for L1 Certified Robustness [119.86676998327864]
分割雑音を伴う非加法的決定論的平滑化法(dssn)を提案する。
一様加法平滑化とは対照的に、ssn認証は無作為なノイズコンポーネントを独立に必要としない。
これは、規範ベースの敵対的脅威モデルに対して決定論的「ランダム化平滑化」を提供する最初の仕事である。
論文 参考訳(メタデータ) (2021-03-17T21:49:53Z) - On the Practicality of Differential Privacy in Federated Learning by
Tuning Iteration Times [51.61278695776151]
フェデレートラーニング(FL)は、分散クライアント間で機械学習モデルを協調的にトレーニングする際のプライバシ保護でよく知られている。
最近の研究では、naive flは勾配リーク攻撃の影響を受けやすいことが指摘されている。
ディファレンシャルプライバシ(dp)は、勾配漏洩攻撃を防御するための有望な対策として現れる。
論文 参考訳(メタデータ) (2021-01-11T19:43:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。