論文の概要: From Randomized Response to Randomized Index: Answering Subset Counting Queries with Local Differential Privacy
- arxiv url: http://arxiv.org/abs/2504.17523v1
- Date: Thu, 24 Apr 2025 13:08:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.373395
- Title: From Randomized Response to Randomized Index: Answering Subset Counting Queries with Local Differential Privacy
- Title(参考訳): ランダム化応答からランダム化インデックス:ローカル差分プライバシによるサブセットカウントクエリの回答
- Authors: Qingqing Ye, Liantong Yu, Kai Huang, Xiaokui Xiao, Weiran Liu, Haibo Hu,
- Abstract要約: ローカル微分プライバシ(LDP)は、個々のデータプライバシを保護するための主要なプライバシモデルである。
我々は、値の摂動ではなく、値のインデックスにランダム化を適用する別のアプローチを提案する。
乱数化インデックスのデニビリティに着想を得て,集合値データに対するサブセットカウントクエリに応答するCRIADを提案する。
- 参考スコア(独自算出の注目度): 27.59934932590226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Local Differential Privacy (LDP) is the predominant privacy model for safeguarding individual data privacy. Existing perturbation mechanisms typically require perturbing the original values to ensure acceptable privacy, which inevitably results in value distortion and utility deterioration. In this work, we propose an alternative approach -- instead of perturbing values, we apply randomization to indexes of values while ensuring rigorous LDP guarantees. Inspired by the deniability of randomized indexes, we present CRIAD for answering subset counting queries on set-value data. By integrating a multi-dummy, multi-sample, and multi-group strategy, CRIAD serves as a fully scalable solution that offers flexibility across various privacy requirements and domain sizes, and achieves more accurate query results than any existing methods. Through comprehensive theoretical analysis and extensive experimental evaluations, we validate the effectiveness of CRIAD and demonstrate its superiority over traditional value-perturbation mechanisms.
- Abstract(参考訳): ローカル微分プライバシ(LDP)は、個々のデータプライバシを保護するための主要なプライバシモデルである。
既存の摂動機構は一般的に、プライバシーを許容するために元の値を摂動する必要があるが、これは必然的に値の歪みとユーティリティーの劣化をもたらす。
本研究では、値の摂動ではなく、厳密な LDP 保証を確保しつつ、値のインデックスにランダム化を適用する方法を提案する。
乱数化インデックスのデニビリティに着想を得て,集合値データに対するサブセットカウントクエリに応答するCRIADを提案する。
マルチダミー、マルチサンプル、マルチグループ戦略を統合することで、CRIADは、さまざまなプライバシ要件やドメインサイズにわたる柔軟性を提供し、既存の方法よりも正確なクエリ結果を実現する、完全にスケーラブルなソリューションとして機能する。
包括的理論的解析と広範囲な実験的評価を通じて,CRIADの有効性を検証し,従来の価値摂動機構よりも優れていることを示す。
関連論文リスト
- Bipartite Randomized Response Mechanism for Local Differential Privacy [12.356030528988002]
BRR(Bipartite Randomized Response)と呼ばれる適応型ローカルプライバシ(LDP)機構を導入する。
あらゆるユーティリティ機能やプライバシレベルにおいて、この問題を解決することは、リリース確率の真のデータとして扱われる高ユーティリティデータの数を確認することと等価であることを示す。
我々のBRRは、連続型と分散型の両方の最先端のLPPメカニズムを著しく上回っている。
論文 参考訳(メタデータ) (2025-04-29T16:39:50Z) - Differentially Private Random Feature Model [52.468511541184895]
プライバシを保存するカーネルマシンに対して,差分的にプライベートな特徴モデルを作成する。
本手法は,プライバシを保護し,一般化誤差を導出する。
論文 参考訳(メタデータ) (2024-12-06T05:31:08Z) - Mitigating LLM Hallucinations via Conformal Abstention [70.83870602967625]
我々は,大言語モデルが一般ドメインでの応答をいつ無視すべきかを決定するための,原則化された手順を開発する。
我々は、幻覚率(エラー率)の厳密な理論的保証の恩恵を受けるため、共形予測手法を活用して、禁忌手順を開発する。
実験によって得られた共形禁忌法は, 種々の閉書, オープンドメイン生成質問応答データセットに, 幻覚率を確実に拘束する。
論文 参考訳(メタデータ) (2024-04-04T11:32:03Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
本稿では, 3次圧縮機と多数決機構を組み合わせて, 差分プライバシー, 勾配圧縮, ビザンチンレジリエンスを同時に実現するternaryVoteを提案する。
提案アルゴリズムのF差分プライバシー(DP)とビザンチンレジリエンスのレンズによるプライバシー保証を理論的に定量化する。
論文 参考訳(メタデータ) (2024-02-16T16:41:14Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Bounded and Unbiased Composite Differential Privacy [25.427802467876248]
差分プライバシ(DP)の目的は、隣接する2つのデータベース間で区別できない出力分布を生成することにより、プライバシを保護することである。
既存のソリューションでは、後処理やトランケーション技術を使ってこの問題に対処しようとしている。
本稿では,合成確率密度関数を用いて有界および非偏りの出力を生成する新しい微分プライベート機構を提案する。
論文 参考訳(メタデータ) (2023-11-04T04:43:47Z) - Evaluating the Impact of Local Differential Privacy on Utility Loss via
Influence Functions [11.504012974208466]
我々は、特定のプライバシパラメータ値がモデルのテスト損失にどのように影響するかについて、インフルエンス関数が洞察を与える能力を示す。
提案手法により,データキュレーターは,プライバシ・ユーティリティのトレードオフに最も適したプライバシパラメータを選択できる。
論文 参考訳(メタデータ) (2023-09-15T18:08:24Z) - Causal Inference with Differentially Private (Clustered) Outcomes [16.166525280886578]
ランダム化実験から因果効果を推定することは、参加者が反応を明らかにすることに同意すれば実現可能である。
我々は,任意のクラスタ構造を利用する新たな差分プライバシメカニズムであるCluster-DPを提案する。
クラスタの品質を直感的に測定することで,プライバシ保証を維持しながら分散損失を改善することができることを示す。
論文 参考訳(メタデータ) (2023-08-02T05:51:57Z) - Regression with Label Differential Privacy [64.21020761920322]
与えられた回帰損失関数の下で最適なラベルDPランダム化機構を導出する。
我々は、最適メカニズムが「ビンのランダム化応答」の形をとることを証明した。
論文 参考訳(メタデータ) (2022-12-12T17:41:32Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
このアルゴリズムは、異なるモードの適応的統合の原理における不確かさを効率的に推定し、信頼できる回帰結果を生成する。
実世界のデータと実世界のデータの両方に対する実験結果から,多モード回帰タスクにおける本手法の有効性と信頼性が示された。
論文 参考訳(メタデータ) (2021-11-11T14:28:12Z) - Non-parametric Differentially Private Confidence Intervals for the
Median [3.205141100055992]
本稿では,中央値に対する有意な個人的信頼区間を計算するためのいくつかの戦略を提案し,評価する。
また、サンプリングからのエラーと出力の保護からのエラーという2つの不確実性源に対処することが、この不確実性を逐次的に組み込んだ単純なアプローチよりも望ましいことを示す。
論文 参考訳(メタデータ) (2021-06-18T19:45:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。