Enhancing Model Robustness and Fairness with Causality: A Regularization
Approach
- URL: http://arxiv.org/abs/2110.00911v1
- Date: Sun, 3 Oct 2021 02:49:33 GMT
- Title: Enhancing Model Robustness and Fairness with Causality: A Regularization
Approach
- Authors: Zhao Wang, Kai Shu, Aron Culotta
- Abstract summary: Recent work has raised concerns on the risk of spurious correlations and unintended biases in machine learning models.
We propose a simple and intuitive regularization approach to integrate causal knowledge during model training.
We build a predictive model that relies more on causal features and less on non-causal features.
- Score: 15.981724441808147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work has raised concerns on the risk of spurious correlations and
unintended biases in statistical machine learning models that threaten model
robustness and fairness. In this paper, we propose a simple and intuitive
regularization approach to integrate causal knowledge during model training and
build a robust and fair model by emphasizing causal features and de-emphasizing
spurious features. Specifically, we first manually identify causal and spurious
features with principles inspired from the counterfactual framework of causal
inference. Then, we propose a regularization approach to penalize causal and
spurious features separately. By adjusting the strength of the penalty for each
type of feature, we build a predictive model that relies more on causal
features and less on non-causal features. We conduct experiments to evaluate
model robustness and fairness on three datasets with multiple metrics.
Empirical results show that the new models built with causal awareness
significantly improve model robustness with respect to counterfactual texts and
model fairness with respect to sensitive attributes.
Related papers
- Assessing Robustness of Machine Learning Models using Covariate Perturbations [0.6749750044497732]
This paper proposes a comprehensive framework for assessing the robustness of machine learning models.
We explore various perturbation strategies to assess robustness and examine their impact on model predictions.
We demonstrate the effectiveness of our approach in comparing robustness across models, identifying the instabilities in the model, and enhancing model robustness.
arXiv Detail & Related papers (2024-08-02T14:41:36Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
We develop a robust interventional-based method to capture cause-effect mechanisms in pre-trained neural networks.
We apply our method to vision models trained on classification tasks.
arXiv Detail & Related papers (2023-05-15T18:37:24Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
This paper shows the existence of a dichotomy between fairness and robustness, and analyzes when achieving fairness decreases the model robustness to adversarial samples.
Experiments on non-linear models and different architectures validate the theoretical findings in multiple vision domains.
The paper proposes a simple, yet effective, solution to construct models achieving good tradeoffs between fairness and robustness.
arXiv Detail & Related papers (2022-11-21T19:55:35Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Clustering Effect of (Linearized) Adversarial Robust Models [60.25668525218051]
We propose a novel understanding of adversarial robustness and apply it on more tasks including domain adaption and robustness boosting.
Experimental evaluations demonstrate the rationality and superiority of our proposed clustering strategy.
arXiv Detail & Related papers (2021-11-25T05:51:03Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Causal Inference with Deep Causal Graphs [0.0]
Parametric causal modelling techniques rarely provide functionality for counterfactual estimation.
Deep Causal Graphs is an abstract specification of the required functionality for a neural network to model causal distributions.
We demonstrate its expressive power in modelling complex interactions and showcase applications to machine learning explainability and fairness.
arXiv Detail & Related papers (2020-06-15T13:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.