論文の概要: Incorporating Test-Time Optimization into Training with Dual Networks for Human Mesh Recovery
- arxiv url: http://arxiv.org/abs/2401.14121v2
- Date: Wed, 30 Oct 2024 07:24:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:23:02.620398
- Title: Incorporating Test-Time Optimization into Training with Dual Networks for Human Mesh Recovery
- Title(参考訳): デュアルネットワークを用いたヒューマンメッシュ回復学習におけるテスト時間最適化の導入
- Authors: Yongwei Nie, Mingxian Fan, Chengjiang Long, Qing Zhang, Jian Zhu, Xuemiao Xu,
- Abstract要約: 本稿では,トレーニングタイムとテストタイムの目標を統一するデュアルネットワークアーキテクチャを提案する。
メタラーニングと双対ネットワークを併用した手法は、最先端の回帰ベースおよび最適化ベースのHMRアプローチより優れている。
- 参考スコア(独自算出の注目度): 35.138312681232264
- License:
- Abstract: Human Mesh Recovery (HMR) is the task of estimating a parameterized 3D human mesh from an image. There is a kind of methods first training a regression model for this problem, then further optimizing the pretrained regression model for any specific sample individually at test time. However, the pretrained model may not provide an ideal optimization starting point for the test-time optimization. Inspired by meta-learning, we incorporate the test-time optimization into training, performing a step of test-time optimization for each sample in the training batch before really conducting the training optimization over all the training samples. In this way, we obtain a meta-model, the meta-parameter of which is friendly to the test-time optimization. At test time, after several test-time optimization steps starting from the meta-parameter, we obtain much higher HMR accuracy than the test-time optimization starting from the simply pretrained regression model. Furthermore, we find test-time HMR objectives are different from training-time objectives, which reduces the effectiveness of the learning of the meta-model. To solve this problem, we propose a dual-network architecture that unifies the training-time and test-time objectives. Our method, armed with meta-learning and the dual networks, outperforms state-of-the-art regression-based and optimization-based HMR approaches, as validated by the extensive experiments. The codes are available at https://github.com/fmx789/Meta-HMR.
- Abstract(参考訳): HMR(Human Mesh Recovery)は、画像からパラメータ化された3次元メッシュを推定するタスクである。
この問題に対してまず回帰モデルをトレーニングし、次にテスト時に個別に特定のサンプルに対して事前訓練された回帰モデルを最適化する手法がある。
しかし、事前訓練されたモデルは、テスト時間最適化のための理想的な最適化開始点を提供しないかもしれない。
メタラーニングにインスパイアされたテストタイム最適化をトレーニングに取り入れ、トレーニングバッチの各サンプルに対してテストタイム最適化のステップを実行し、すべてのトレーニングサンプルに対して実際にトレーニング最適化を実行します。
このようにして、テスト時間最適化に親しみやすいメタパラメータであるメタモデルを得る。
テスト時, メタパラメータから開始したいくつかのテスト時間最適化ステップの後, 単純な事前学習回帰モデルから開始したテスト時間最適化よりもはるかに高いHMR精度が得られる。
さらに,テスト時間HMR目標とトレーニング時間目標とが異なり,メタモデルの学習効率が低下することがわかった。
この問題を解決するために,トレーニング時間とテスト時間の目的を統一するデュアルネットワークアーキテクチャを提案する。
提案手法は,メタラーニングと2重ネットワークを併用した手法であり,従来の回帰に基づくHMR手法や最適化に基づくHMR手法よりも優れた性能を示す。
コードはhttps://github.com/fmx789/Meta-HMRで入手できる。
関連論文リスト
- FREE: Faster and Better Data-Free Meta-Learning [77.90126669914324]
Data-Free Meta-Learning (DFML) は、トレーニング済みモデルのコレクションから、元のデータを必要としない知識を抽出することを目的としている。
i)事前訓練されたモデルからトレーニングタスクを迅速に回復するためのメタジェネレータ,(ii)新しい未知のタスクに一般化するためのメタラーナーを含む、より高速で優れたデータフリーなメタラーニングフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-05-02T03:43:19Z) - Architecture, Dataset and Model-Scale Agnostic Data-free Meta-Learning [119.70303730341938]
データフリーメタトレーニングにおけるePisode cUrriculum inversion(ECI)と、内部ループ後のinvErsion calibRation(ICFIL)を提案する。
ECIは、メタモデルのリアルタイムフィードバックに応じて、擬似エピソードの難易度を適応的に増加させる。
本稿では,ECIを用いたメタトレーニングの最適化過程を,エンド・ツー・エンド方式で近似形式として定式化する。
論文 参考訳(メタデータ) (2023-03-20T15:10:41Z) - Meta-Registration: Learning Test-Time Optimization for Single-Pair Image
Registration [0.37501702548174964]
この研究は、画像登録をメタ学習アルゴリズムとして定式化する。
前立腺癌108例の臨床経直腸超音波画像データを用いて実験を行った。
論文 参考訳(メタデータ) (2022-07-22T10:30:00Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption [69.76837484008033]
ディープラーニングの未解決の問題は、ニューラルネットワークがテスト時間中のドメインシフトに対処する能力である。
メタラーニング、自己監督、テストタイムトレーニングを組み合わせて、目に見えないテスト分布に適応する方法を学びます。
この手法はcifar-10による画像分類ベンチマークの最先端結果を大幅に改善する。
論文 参考訳(メタデータ) (2021-03-30T09:33:38Z) - How much progress have we made in neural network training? A New
Evaluation Protocol for Benchmarking Optimizers [86.36020260204302]
本稿では、エンドツーエンドの効率とデータ付加訓練の効率を評価するための新しいベンチマークプロトコルを提案する。
評価プロトコルは, ランダム探索よりも, 人間のチューニング行動とよく一致していることを示すために, 人間の実験を行った。
次に,提案したベンチマークフレームワークをコンピュータビジョン,自然言語処理,強化学習,グラフマイニングなどのタスクに適用する。
論文 参考訳(メタデータ) (2020-10-19T21:46:39Z) - Neural Model-based Optimization with Right-Censored Observations [42.530925002607376]
ニューラルネットワーク(NN)は、モデルベースの最適化手順のコアでうまく機能することが実証されている。
トレーニングされた回帰モデルは,いくつかのベースラインよりも優れた予測品質が得られることを示す。
論文 参考訳(メタデータ) (2020-09-29T07:32:30Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
目的の新たな微分可能近似に基づく最適な合成データ生成法を提案する。
提案手法は,学習データ生成の高速化(最大50Times$)と,実世界のテストデータセットの精度向上(+8.7%$)を実現している。
論文 参考訳(メタデータ) (2020-08-16T11:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。