論文の概要: AutoSimulate: (Quickly) Learning Synthetic Data Generation
- arxiv url: http://arxiv.org/abs/2008.08424v1
- Date: Sun, 16 Aug 2020 11:36:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 08:58:20.529717
- Title: AutoSimulate: (Quickly) Learning Synthetic Data Generation
- Title(参考訳): AutoSimulate:(簡単に)学習する合成データ生成
- Authors: Harkirat Singh Behl, At{\i}l{\i}m G\"une\c{s} Baydin, Ran Gal, Philip
H.S. Torr, Vibhav Vineet
- Abstract要約: 目的の新たな微分可能近似に基づく最適な合成データ生成法を提案する。
提案手法は,学習データ生成の高速化(最大50Times$)と,実世界のテストデータセットの精度向上(+8.7%$)を実現している。
- 参考スコア(独自算出の注目度): 70.82315853981838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation is increasingly being used for generating large labelled datasets
in many machine learning problems. Recent methods have focused on adjusting
simulator parameters with the goal of maximising accuracy on a validation task,
usually relying on REINFORCE-like gradient estimators. However these approaches
are very expensive as they treat the entire data generation, model training,
and validation pipeline as a black-box and require multiple costly objective
evaluations at each iteration. We propose an efficient alternative for optimal
synthetic data generation, based on a novel differentiable approximation of the
objective. This allows us to optimize the simulator, which may be
non-differentiable, requiring only one objective evaluation at each iteration
with a little overhead. We demonstrate on a state-of-the-art photorealistic
renderer that the proposed method finds the optimal data distribution faster
(up to $50\times$), with significantly reduced training data generation (up to
$30\times$) and better accuracy ($+8.7\%$) on real-world test datasets than
previous methods.
- Abstract(参考訳): 多くの機械学習問題で、大きなラベル付きデータセットを生成するために、シミュレーションがますます使われています。
近年の手法は,ReINFORCEのような勾配推定器に頼って,検証タスクの精度を最大化することを目的として,シミュレータパラメータの調整に重点を置いている。
しかし、これらのアプローチは、データ生成、モデルトレーニング、バリデーションパイプライン全体をブラックボックスとして扱うため、非常に高価であり、各イテレーションで複数のコストで客観的な評価を必要とする。
目的の新たな微分可能近似に基づく最適な合成データ生成のための効率的な代替案を提案する。
これにより、シミュレータを最適化できるが、これは非微分可能であり、各イテレーションでほんの少しのオーバーヘッドで1つの客観的評価しか必要としない。
提案手法が最適なデータ分布(最大$50\times$)を高速に見つけ、トレーニングデータ生成(最大$30\times$)を著しく削減し、実世界のテストデータセットにおける精度($+8.7\$$$)を従来の手法よりも向上させることを実証した。
関連論文リスト
- FLOPS: Forward Learning with OPtimal Sampling [1.694989793927645]
勾配に基づく計算手法は、最近、クエリとも呼ばれる前方通過のみによる学習に焦点が当てられている。
従来の前方学習はモンテカルロサンプリングによる正確な勾配推定のために各データポイントで膨大なクエリを消費する。
本稿では,評価精度と計算効率のバランスを良くするために,訓練中の各データに対して最適なクエリ数を割り当てることを提案する。
論文 参考訳(メタデータ) (2024-10-08T12:16:12Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z) - Non-iterative optimization of pseudo-labeling thresholds for training
object detection models from multiple datasets [2.1485350418225244]
低コストデータセットの集合からオブジェクト検出を学習するために、擬似ラベル閾値を最適化する非定型的手法を提案する。
提案手法はCOCOおよびVOCデータセット上の格子探索に匹敵するmAPを実現することを実験的に実証した。
論文 参考訳(メタデータ) (2022-10-19T00:31:34Z) - Easy Differentially Private Linear Regression [16.325734286930764]
本研究では,指数関数機構を用いて,非プライベート回帰モデルの集合からタキー深度の高いモデルを選択するアルゴリズムについて検討する。
このアルゴリズムは、データリッチな設定において、強い経験的性能を得る。
論文 参考訳(メタデータ) (2022-08-15T17:42:27Z) - Efficient Learning of Accurate Surrogates for Simulations of Complex Systems [0.0]
サンプリング駆動サンプリングによって強化されたオンライン学習手法を提案する。
モデル応答面上のすべての旋回点がトレーニングデータに含まれることを保証する。
本手法を核物質のシミュレーションに適用し,高精度なサロゲートを確実に自動生成できることを実証する。
論文 参考訳(メタデータ) (2022-07-11T20:51:11Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - How to distribute data across tasks for meta-learning? [59.608652082495624]
タスクごとのデータポイントの最適な数は予算に依存しますが、それは大きな予算のためのユニークな一定の値に収束します。
この結果から,データ収集の簡便かつ効率的な手順が示唆された。
論文 参考訳(メタデータ) (2021-03-15T15:38:47Z) - Continuous Optimization Benchmarks by Simulation [0.0]
最適化アルゴリズムのテスト、比較、チューニング、理解にはベンチマーク実験が必要である。
以前の評価から得られたデータは、ベンチマークに使用される代理モデルのトレーニングに使用することができる。
本研究では,スペクトルシミュレーションにより連続最適化問題のシミュレーションが可能であることを示す。
論文 参考訳(メタデータ) (2020-08-14T08:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。